【補助線主体の図形問題 #007】
今回は図形問題の王道から円がらみの求角問題を用意しました。手慣れている方なら脳内で処理できるくらいの計算量です。どうぞ円と角度の世界を堪能してください。
解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) 12∘ → 12.00 3607∘ → 51.43
入力を一意に定めるための処置です。
近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
円周上には6つの点があり、6つの弧で構成されていますが、それぞれの弧に対する円周角が求まるわけではありません。ここでは弧2ヶ所分や3ヶ所分の円周角の和が求まったりします。それぞれの弧に対する円周角を文字で置き、その関係式を導いてみましょう。
円に対して交わらない2本の弦があって、それを延長してできる角の大きさは、特定の円周角の差で表せることが知られています。「アルハゼンの定理」でウェブ検索してみるとこの内容が具体的にわかるかもしれません。
たとえば、∠Pの大きさは⌢AFEDに対する円周角から⌢BCに対する円周角を引いた値と等しくなります。∠Q、∠Rについても同様の式を導き、ひとまずは⌢BAFに対する円周角の大きさを目標としましょう。
この問題を解いた人はこんな問題も解いています