EasyNumber.1 サイコロ勝負

PCTSMATH 採点者ジャッジ 難易度: 数学 > 高校数学
2020年6月10日16:52 正解数: 0 / 解答数: 2 ギブアップ不可

問題文

AさんBさんの二人の人がいる
この時サイコロをAさんが投げる
1.2.3が出たら次回は次の人がサイコロを投げる
4.5が出たら次回も同じ人が投げる
6が出たら勝利である
N回目でAが勝利する確率を求めよ

解答形式

Nについての式を求めよ


ヒント1

簡単なのでなし


スポンサーリンク

解答提出

この問題は出題者ジャッジの問題です。 出題者が解答を確認してから採点を行います。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

Leafy Trees

halphy 自動ジャッジ 難易度:
4年前

1

問題文

からなる $2$ 次元的な植物を考えます。植物は,以下の条件を満たすような枝 $s$ 本と葉 $l$ 枚からなります。


条件

  1. $s, l$ は $0$ 以上の整数である。
  2. 枝の両端の点には,枝または葉が $0$ 個以上つながっている。
  3. すべての枝からたどりつくことができるような,とよばれる点がただひとつ存在する。
  4. 枝がループを作るようにつながっていることはない。

この植物の重さ $n$ は $n=2s+l$ で表されます。例えば,重さ $4$ の異なる植物をすべて描いたものは下図のようになります。

ここで,ある点に着目したときに,その点から出ている葉と枝の並びが異なるものは区別することに注意しましょう。

重さ $n$ の植物が $t_n$ 種類あるとき
\begin{equation}
\sum_{n=0}^{\infty}\frac{t_n}{3^n}
\end{equation}の値を求めなさい。ただし,級数が収束することは証明なしに用いてかまいません。

解答形式

答えは正の有理数 $r$ です。

  • $r$ が整数ならば,$r$ を半角数字で出力してください。
  • $r$ が整数でないならば,互いに素な自然数 $a, b$ を用いて $r=\displaystyle{\frac{a}{b}}$ と表し,$a$ を $1$ 行目に,$b$ を $2$ 行目にそれぞれ半角数字で出力してください。

因数分解

zyogamaya 自動ジャッジ 難易度:
4年前

3

問題文

$x^4+y^4+z^4+w^4+(x^2+y^2+z^2+w^2)(xy+xz+xw+yz+yw+zw)+4xyzw$
を因数分解せよ。

解答形式

TeXで入力してください。項の順番に関しては辞書式順で入力してください。字数の高い因数を先に書いてください。
例1:
$(x^2+y^2+z^2+w^2)(x+y+z+w)$と答えるには
(x^2+y^2+z^2+w^2)(x+y+z+w)を入力してください。
例2:
$x,y,z,w$から重複せず3文字を選び、かけ合わせた項4つを辞書式順に並べると
$xyz,xyw,xzw,yzw$

雑学的数学問題集 1

LUBE 自動ジャッジ 難易度:
17月前

4

おことわり

以下の問題において,1日は正確に24時間,1時間は正確に60分,1分は正確に60秒であるとする。

問題

1太陽年(すなわち地球の公転周期)を正確に31556925秒とする。1年を365日とした暦(以下「暦」という)と太陽年を合わせるため,ある$X$年の暦において,次の条件に当てはまったときにうるう年を施す。

うるう年の決め方
  1. $X$が4で割り切れる年を366日とする。これをうるう年という。

  2. $X$が100で割り切れる年には施されるはずだった,うるう年をキャンセルする。

  3. $X$が400で割り切れる年はうるう年とする。

このうるう年の仕組みにより,太陽年と大きくずれることなく暦を運用できる。

ある年$Y$年において,うるう年を勘案しても暦が太陽年と1日以上のずれを起こすことが分かった。このとき,$Y$の最小値を求めよ。ただし$Y$は自然数とする。

解答形式

解答は自動で判定されます。半角数字のみで答えてください。単位,カンマ区切り,0埋め,有効数字などは必要ありません。

◎ よい例
  • 2023
  • 1
  • 1000000000000
▲ わるい例
  • 2023年(単位)
  • 2,023(カンマ区切り)
  • 0002(0埋め)
  • 1.0×10^5(有効数字)

求長問題14

Kinmokusei 自動ジャッジ 難易度:
3年前

2

問題文

半径21の扇形に図のように線を引きました。青い三角形の面積が213のとき、赤い線分の長さを求めてください。

※高校数学カテゴリに入れてますが、中学数学範囲での綺麗な解法をTwitterにて頂きました。是非考えてみてください。

解答形式

解答は既約分数$\frac{\fbox{アイウ}}{\fbox{エ}}$となります。文字列「アイウエ」を解答してください。
ただし、$\fbox ア ~ \fbox エ$には$0$以上$9$以下の整数が入ります。

immovable

yuuki_sakimori 自動ジャッジ 難易度:
4年前

9

問題文

自然数$a,b,c,d$は
$$
a\neq b
$$ $$
(a+b)(a-b)+(ad-bc)=0
$$ $$
bc-a^2=1
$$
を満たしています.このとき
$$
\frac{c-d}{a-b}
$$
の取り得る値を全て求めてください.

解答形式

半角数字で解答してください.複数ある場合は小さい順に一行ずつ入力してください.
Ex:答えが「1」と「-$\frac{3}{89}$」と「100」のとき
-3/89
1
100
と解答してください.

数の大小

PonPon 自動ジャッジ 難易度:
2年前

4

問題

以下の問に関して, $2.71<e<2.72$ , $3.14<π<3.15$ とする.

(1) $a≠0$ のとき $a+1$ , $e^a$ の大小を比較せよ.

(2) $α>0$ かつ $β>0$ かつ $α≠β$ のとき,
$\hspace{11pt} $ $α-β$ , $β(logα-logβ)$ の大小を比較せよ.

(3) $e^π$ , $π^e$ の大小を比較せよ.

(4) $e^{e^e},e^{e^π},e^{π^e},e^{π^π},π^{e^e},π^{e^π},π^{π^e},π^{π^π} $ の大小を比較せよ.
$\hspace{11pt} $ここで, $a^{b^c}$は $a^{(b^c)} $を表す.

解答形式

(1) ① $a+1$ ② $e^a$
(2) ① $α-β$ $\:$② $β(logα-logβ)$
(3) ① $e^π$ ② $π^e$
(4) ①$e^{e^e}$②$e^{e^π}$③$e^{π^e}$④$e^{π^π}$⑤$π^{e^e}$⑥$π^{e^π}$⑦$π^{π^e}$⑧$π^{π^π} $
として問ごとに改行し,小さい順に左から半角数字を用いて並べよ.
(例)12345678

整角問題2

hkd585 自動ジャッジ 難易度:
2年前

22

問題文

凸四角形$ABCD$の対角線$AC$上に点$E$があり,$\angle BAC=30^\circ$,$\angle ABE=110^\circ$,$\angle CBE=20^\circ$,$\angle DAC=10^\circ$,$\angle ADE=10^\circ$がそれぞれ成り立っている.このとき,$\angle CDE$の大きさを度数法で表すと,$x^\circ$となる.

$x$に当てはまる数を求めよ.

※3通りの解法を用意しています.難しくはないので,いろんな方向からアプローチしてみてください.

解答形式

解答のみを,半角数字で答えてください.

内接球の半径

ryno 自動ジャッジ 難易度:
2年前

4

問題文

3辺がそれぞれ3,√2,√10である不等辺三角形から成る等面四面体𝑋が存在する。三角形の面積を𝑝、𝑋に内接する球体の半径を𝑞とするとき、𝑞を𝑝を用いて表せ。

解答形式

𝑞=√a/b𝑝となります。
a+bを半角で答えてください

求角問題3

Kinmokusei 自動ジャッジ 難易度:
4年前

6

問題文

半円3つが図のように配置されています。∠Xと∠Yの差を求めてください。
※同じ色で示した線分は長さが等しいです。

解答形式

0~360までの整数を半角数字で解答してください。
「度」や「°」などの単位を付けないでください。
例: 30° → 30

整角問題

hkd585 自動ジャッジ 難易度:
2年前

5

問題文

三角形$ABC$の内部に点$P$があり,$\angle ABP=42^\circ$,$\angle CBP=42^\circ$,$\angle ACP=6^\circ$,$\angle BCP=12^\circ$がそれぞれ成り立っている.このとき,$\angle BAP$の大きさを度数法で表すと,$x^\circ$となる.

$x$に当てはまる数を求めよ.

解答形式

解答のみを,半角数字で答えてください.

求長問題7

Kinmokusei 自動ジャッジ 難易度:
4年前

3

問題文


$参考図(長さ等は正確でない)$

解答形式

半角数字で解答してください。

座標平面上の確率

ryno 自動ジャッジ 難易度:
2年前

5

問題文

Oを原点とする座標平面上において、
2点A(3,-√3)、B(√3,-3)があり、点O(0,0)を中心とし半径がOBである円O上を点C が自由に動き回る。このとき、△ABCの領域が原点を含まない確率を求めよ。

解答形式

分母と分子の和を半角で答えてください。