AさんBさんの二人の人がいる この時サイコロをAさんが投げる 1.2.3が出たら次回は次の人がサイコロを投げる 4.5が出たら次回も同じ人が投げる 6が出たら勝利である N回目でAが勝利する確率を求めよ
Nについての式を求めよ
簡単なのでなし
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
枝と葉からなる $2$ 次元的な植物を考えます。植物は,以下の条件を満たすような枝 $s$ 本と葉 $l$ 枚からなります。
条件
この植物の重さ $n$ は $n=2s+l$ で表されます。例えば,重さ $4$ の異なる植物をすべて描いたものは下図のようになります。
ここで,ある点に着目したときに,その点から出ている葉と枝の並びが異なるものは区別することに注意しましょう。
重さ $n$ の植物が $t_n$ 種類あるとき \begin{equation} \sum_{n=0}^{\infty}\frac{t_n}{3^n} \end{equation}の値を求めなさい。ただし,級数が収束することは証明なしに用いてかまいません。
答えは正の有理数 $r$ です。
自然数$a,b,c,d$は $$ a\neq b $$ $$ (a+b)(a-b)+(ad-bc)=0 $$ $$ bc-a^2=1 $$ を満たしています.このとき $$ \frac{c-d}{a-b} $$ の取り得る値を全て求めてください.
半角数字で解答してください.複数ある場合は小さい順に一行ずつ入力してください. Ex:答えが「1」と「-$\frac{3}{89}$」と「100」のとき -3/89 1 100 と解答してください.
半円3つが図のように配置されています。∠Xと∠Yの差を求めてください。 ※同じ色で示した線分は長さが等しいです。
0~360までの整数を半角数字で解答してください。 「度」や「°」などの単位を付けないでください。 例: 30° → 30
図のように3つの正方形が配置されています。3つの線分の長さが図のように与えられたとき、緑の六角形の面積を求めてください。
面積は、 $$ \fbox{アイ}+\frac{\fbox{ウエ}\sqrt{\fbox{オカ}}}{\fbox{キ}} $$ となります。$\fbox ア~\fbox キ$には0以上9以下の整数が入ります。文字列「アイウエオカキ」を解答してください(「」は不要)。ただし、根号の中身や分数は最も簡単な形にしてください。
例$$ 面積S=17+\frac{22\sqrt{52}}{8}\rightarrow 17+\frac{11\sqrt{13}}{2}\rightarrow 1711132 と解答 $$
図のように正五角形と正三角形が配置されています。緑の$x$で示した角度を求めてください。 なお、赤で示した2つの線分は長さが等しく、青で示した角は直角です。
度数法で、単位を付けずに0以上180未満の数を半角数字で解答してください。
正方形の中に図のように線を引きました。赤、青の線分の長さがそれぞれ1,7のとき、緑の線分の長さを求めてください。
半角数字で解答してください。
$△ABC$は鋭角三角形とします。次に、$A,B,C$から$BC,CA,AB$におろした垂線の足をそれぞれ$X,Y,Z$とし、$△ABC,△XYZ$の内接円の半径をそれぞれ$r,r'$とします。このとき、次の式の最小値を求めてください。 $$ \frac{r}{r'}\cos{\frac A2}\cos{\frac B2}\cos{\frac C2} $$
$$ \frac{r}{r'}\cos{\frac A2}\cos{\frac B2}\cos{\frac C2}\geq\frac{[ア]\sqrt{[イ]}}{[ウ]}=(最小値) $$ となります。$[ア]+[イ]+[ウ]$を半角数字で解答してください。 ただし、$[ア],[イ],[ウ]$には自然数が入ります。また、分数部分は既約分数に、根号内の数字は最小となるようにしてください。
※2020.11.10 18:49 問題タイトルを修正しました。 (解答に影響はありません)
図中の線分ABの長さを求めてください。 緑で示した2つの三角形の面積の差は11,赤と青で示した線分の長さの差は1です。
半径21の扇形に図のように線を引きました。青い三角形の面積が213のとき、赤い線分の長さを求めてください。
※高校数学カテゴリに入れてますが、中学数学範囲での綺麗な解法をTwitterにて頂きました。是非考えてみてください。
解答は既約分数$\frac{\fbox{アイウ}}{\fbox{エ}}$となります。文字列「アイウエ」を解答してください。 ただし、$\fbox ア ~ \fbox エ$には$0$以上$9$以下の整数が入ります。
$参考図(長さ等は正確でない)$
正六角形2つが図のように配置されています。赤い線分と青い線分の長さの比が1:4であるとき、緑で示した角Yの角度を求めてください。 ただし、図中"center"で示した点は正六角形の外心です。
0~360までの半角数字で、「°」や「度」をつけずに解答してください。
三角形の3つの内角の大きさを$A,B,C$とします。このとき、次の式の最小値を求めてください。 $$ \frac{1-\cos A}{\cos B+\cos C}+\frac{1-\cos B}{\cos C+\cos A}+\frac{1-\cos C}{\cos A+\cos B} $$
最小値は$\frac {[ア]}{[イ]}$となります。$[ア]+[イ]$を解答してください。 ただし、$[ア],[イ]$にはそれぞれ自然数が入り、その最大公約数は$1$とします。