数学の問題一覧

カテゴリ
以上
以下

halphy

公開日時: 2020年6月10日17:57 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

次の命題の真偽を答えなさい。

  1. $0\leq a, b < 10$ を満たす実数 $a,b$ を $10$進小数 で表したものをそれぞれ $a_0.a_1a_2a_3\cdots, \;b_0.b_1b_2b_3\cdots$ とするとき,ある $k=0,1,\cdots$ に対して $a_k\neq b_k$ ならば $a\neq b$ である。

  2. $\vec{a}_1, \vec{a}_2$ を平行(*)でない平面ベクトルとする。実数 $k_1, k_2, k_1', k_2'$ に対して
    \begin{equation}
    k_1\vec{a}_1+k_2\vec{a}_2=k_1'\vec{a}_1+k_2'\vec{a}_2
    \end{equation}が成り立つならば $k_1=k_1'$ かつ $k_2=k_2'$ である。

  3. 実数全体を定義域とする微分可能な実数値関数 $f(x)$ が
    \begin{equation}
    f'(x)=x
    \end{equation}を満たすとする。このとき,$f(x)$ はある実数 $a$ を用いて
    \begin{equation}
    f(x)=\int_a^x t dt
    \end{equation}と表せる。

  4. 数列 $\{a_n\}, \{b_n\}$ は $n\to\infty$ である実数に収束するとする 。任意の $n$ に対して $b_n\neq 0$ ならば,数列 $\displaystyle{\left\{\frac{a_n}{b_n}\right\}}$ も収束する。

注意

  • *この問題では,平面ベクトル $\vec{a}_1, \vec{a}_2$ が平行であるとは $\vec{a}_1=k\vec{a}_2$ となる実数 $k\neq 0$ が存在することをいいます。
  • (2020/6/11 15:40 更新)命題 1 の条件を変更しました。正解には影響ありません。

解答形式

$k=1,2,3, 4$ に対して,命題 $k$ が真なら T を,偽なら F を第 $k$ 行に出力してください。

shakayami

公開日時: 2020年6月10日17:42 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$f_m(x)$という関数列を$f_1(x)=\log{x},f_{m+1}=\log{f_m(x)}$と定義します。ただし$\log{x}$は自然対数です。
具体的には$f_1(x)=\log{x},f_2(x)=\log{\log{x}},f_3(x)=\log{\log{\log{x}}},\ldots$となります。
このとき、
$$\lim_{n\to\infty}\{f_m(3^n)-f_m(2^n)\}=0$$
となるような最小の自然数$m$を求めてください。

解答形式

半角数字で入力してください。

masorata

公開日時: 2020年6月10日17:19 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$65537=2^{16}+1$ が素数かどうか、計算機を使わずに判定したい。以下では $p$ を3以上の素数として、⑴から⑸の問いに答えよ。

⑴ $2^p$ を $p$ で割ったあまりは $p$ によらないことを示し、その値を求めよ。
⑵ $65537$ が $p$ で割り切れるとき、$2^n$ を $p$ で割ったあまりが $1$ になるような最小の自然数 $n$ を求めよ。
⑶ $65537$ が $p$ で割り切れるとき、$p$ を $32$ で割ったあまりとしてあり得る値をすべて求めよ。
⑷ $ p < \sqrt{65537}$ をみたす $p$ であって、$p$ を $32$ で割ったあまりが⑶で求めた数になるようなものをすべて求めよ。
⑸ 以上の結果から、$65537$ が素数かどうか判定せよ。

解答形式

以下の指示に従って、すべて半角数字で入力せよ。

⑴から⑷までの答えはいずれも非負整数である。
⑴の答えを1行目に入力せよ。
⑵の答えを2行目に入力せよ。
⑶の答えは1つずつ改行して3,4,......i 行目に小さい順に入力せよ。
⑷の答えも1つずつ改行してi+1,i+2, ......j行目に小さい順に入力せよ。
最後に⑸の答えとして、$65537$ が素数であれば1を、そうでなければ0を入力せよ。

20/06/19: 解答の一部にミスがあったため修正しました。

PCTSMATH

公開日時: 2020年6月10日16:55 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

ある二つの自然数a,bは積が和より1000大きくどちらかが立方数だった
この時a,bの組を全て求めよ

解答形式

a<bとした時のaを小さい順に半角数字で解答せよ
例 (4,7)(8,91)の時は48

PCTSMATH

公開日時: 2020年6月10日16:52 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ


問題文

AさんBさんの二人の人がいる
この時サイコロをAさんが投げる
1.2.3が出たら次回は次の人がサイコロを投げる
4.5が出たら次回も同じ人が投げる
6が出たら勝利である
N回目でAが勝利する確率を求めよ

解答形式

Nについての式を求めよ

PCTSMATH

公開日時: 2020年6月10日16:50 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ


問題文

2つのパラメーター(0,0)
がある
一回の操作でどちらかの数字を1増やすか減らすかする
それぞれ1/4の確率で起こる
この時操作をした回数が2n(nは自然数)の時パラメーターが(0,0)になる確率はnが大きければ大きいほど低くなることを証明せよ

解答形式

証明形式

hinu

公開日時: 2020年6月10日14:28 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

定積分

$$
\int_0^1 (\sqrt[7]{1-x^{11}}-\sqrt[11]{1-x^{7}})dx
$$

を求めよ。

解答形式

値は半角数字で記述せよ。無理数などを用いたい場合は必要ならばTeX記法により記述せよ。

BlueHawaii

公開日時: 2020年6月10日13:54 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ


問題文

$a=e^{2AX},c=e^{2CX}$(Xは正の定数,A,Cは実数)とする.
$f(x)=-a\log_e(x+c)+X$とする.$y=f(x)$の$y$切片を点P,
$y=f(x)$と点$(0,X)$で接する接線$l$と$y$軸とが成す角を
$\theta\;(\theta\mbox{は}0<\theta<\dfrac{\pi}{2}\mbox{を満たす実数})$,$y=f(x)$の$x$切片を点Qとする.
$\tan\dfrac{\theta}{2}$をネイピア数$e$を用いて表せ.
また,点Qの$x$座標が正の無限大に大きくなるとき,$\tan\dfrac{\theta}{2}$の値の極限値を求めよ.

解答形式

記述式解答を求む.(直感で答えが出る可能性があるので)

okapin

公開日時: 2020年6月9日20:27 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$n$を2以上の整数とし, $f(x)=\sqrt[n]{x^n+nx^{n-1}} (x\geq0)$を考える。

$(1)$ $x$を正の整数とするとき, $f(x)$の値が整数でないことを示せ。

$(2)$ $y=f(x)$, $x$軸, $x=m-1$ ($m$は正の整数) で囲まれた領域内(境界線上も含む)の格子点の数を求めよ。

解答形式

$(2)$ で $m=100$ のときの答えを半角数字で入力してください。

okapin

公開日時: 2020年6月9日13:53 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

中心$O$, 直径$AB$とする円の$A,B$以外の円周上の点$C$を取り, $\angle BAC=\theta \ (0^\circ<\theta <90^\circ)$ とする。
このとき, 線分$OD$が線分$AC$によって二等分されるような点$D$が円周上に取れるような$\theta$の取りうる範囲を求めよ。

解答形式

求める$\theta$の範囲は$a^\circ<\theta\leq b^\circ$となります。1行目に$a$, 2行目に$b$を半角数字で入力してください。

yuuki_sakimori

公開日時: 2020年6月9日1:18 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

自然数$a,b,c,d$は
$$
a\neq b
$$ $$
(a+b)(a-b)+(ad-bc)=0
$$ $$
bc-a^2=1
$$
を満たしています.このとき
$$
\frac{c-d}{a-b}
$$
の取り得る値を全て求めてください.

解答形式

半角数字で解答してください.複数ある場合は小さい順に一行ずつ入力してください.
Ex:答えが「1」と「-$\frac{3}{89}$」と「100」のとき
-3/89
1
100
と解答してください.

lucy

公開日時: 2020年6月8日1:47 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$p^2+q^2+r^2+s^2=t^4+1$を満たす素数$(p,q,r,s,t)$の組を全て求めよ。但し$p\leq q\leq r\leq s$とする。

解答形式

一行目に式を満たす組が何組あるか答えよ。また、そのような組の中で、$t$が最大であるものについて、$p,q,r,s,t$の値をそれぞれ2行目、3行目、4行目…へ記入せよ。いずれも数字のみ記入せよ。

(本当は解き方まで見たいですが、個別判定が大変なのでこの形式にします。できれば、なぜそうなるかもしっかり考えてください。)