数学の問題一覧

カテゴリ
以上
以下

tb_lb

公開日時: 2021年3月28日22:41 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 長さ

【補助線主体の図形問題 #008】
 今回も補助線の威力が味わえる問題を用意しました。暗算でも処理可能な解法も仕込んであります。挑戦をお待ちしております!

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\def\mytri#1{\triangle \mathrm{#1}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 全体の方針をぼんやりと
  2. ヒント1の内容をやや具体的に
  3. ヒント2の続き

tb_lb

公開日時: 2021年3月14日22:23 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 面積

【補助線主体の図形問題 #006】
 投稿日である今日3月14日は、円周率$\pi$の近似値 $3.14$ になぞらえて「円周率の日」と定められています。ということで「円周率の日」記念に円多めの問題を用意しました。
 補助線が活躍するのはいつも通りです。ちょっとした知識があると暗算で処理可能ですが、そうでなくとも大した計算量ではありません。どうぞ円まみれのお時間を楽しんでいただければ幸いです。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\def\mytri#1{\triangle \mathrm{#1}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 全体の方針をぼんやりと
  2. ヒント1の内容をやや具体的に
  3. ヒント2の続き

Kinmokusei

公開日時: 2021年2月28日9:17 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

図のように正五角形と正三角形が配置されています。緑の$x$で示した角度を求めてください。
なお、赤で示した2つの線分は長さが等しく、青で示した角は直角です。

解答形式

度数法で、単位を付けずに0以上180未満の数を半角数字で解答してください。

326_math

公開日時: 2023年2月8日17:05 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

整数 素数

問題文

$2^{p}+7^{q}=r^{p+q-r}$を満たす素数の組$(p,q,r)$をすべて求めよ.

解答形式

文字列$pqr$を,半角数字で解答してください.解が複数ある場合は,
(1) $p$の値が小さい順
(2) $p$の値が等しい組は,$q$の値が小さい順
(3) $p,q$の値がともに等しい組は,$r$の値が小さい順
に,1行に1つずつ書いてください.

追記

どなたか素数に限らない整数解を全て求めてくださるとありがたいです.

natsuneko

公開日時: 2023年10月30日14:07 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

代数

問題文

実数 $x,y$ が $x^2+y^2 = 1$ を満たしています. このとき, $\cfrac{7xy-5x-5y+22}{x^2-10x+25}$ のとり得る最大値を $M$, 最小値を $N$ としたときの $NM$ の値を求めてください. ただし, 答えは互いに素な正整数 $a,b$ を用いて $\cfrac{b}{a}$ と表されるので, $a+b$ の値を解答して下さい.

解答形式

非負整数値を解答して下さい.

natsuneko

公開日時: 2024年2月21日21:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何

問題文

こちらも問題に不備があったため、数値設定を変更いたしました。不備が重なってしまいたいへん申し訳ありません。

正六角形 $ABCDEF$ の線分 $AC, BC, DE$ 上にそれぞれ点 $P, Q, R$ を取ったところ, $PQ \perp BC, PR \perp DE, \angle QAR=60^\circ$ が成立しました. また, 三角形 $APQ$ の外心を $O$, 三角形 $APR$ の外心を $O^\prime$ とし, 三角形 $AOO^\prime$ の外接円と三角形 $APQ$ の外接円の交点を $X( \neq A)$, 三角形$AOO^\prime$ の外接円 と三角形 $APR$ の外接円の交点を $Y( \neq A)$ とすると, $BY=7$ が成立しました. このとき, 線分 $DX$ の長さを求めて下さい.

解答形式

答えは最大公約数が $1$ である正整数 $a,b, c$ によって $\cfrac{\sqrt{b}-c}{a}$ と表されるため, $a+b+c$ の値を半角数字で解答してください.

326_math

公開日時: 2023年12月1日22:44 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

整数 余り ゲーム

問題文

自然数 $n$ に対し,次のように定められた数列 $\{a_{n}\},\{b_{n}\},\{c_{n}\}$ がある:

  • $a_{1}=2023^{2023}$
  • $a_{n}$ を $120$ で割った商が $b_{n}$,余りが $c_{n}$
  • $a_{n+1}=b_{n}+c_{n}$

このとき,$\lim_{n\to\infty}a_{n}$ を求めよ.

解答形式

半角数字で解答してください.

tb_lb

公開日時: 2023年8月6日22:29 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 長さ

【補助線主体の図形問題 #110】
 今週の図形問題です。このところ五心の活躍が多いですが、今回登場するのは重心と内心。この2点が平行線でつながっています。これらの図形が織りなす性質を楽しんでください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

huronntogarasuugaku

公開日時: 2023年1月3日18:45 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

nを自然数とする。各位の数の積をs(n)とするとき、s(n)=nを満たすnの総和を求めよ
ただし、nが1桁の時s(n)=s(10+n)が成り立つとする

解答形式

半角数字で入力してください

Kinmokusei

公開日時: 2022年8月14日0:10 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

図の条件の下で、青で示した三角形の面積を求めてください。

解答形式

解答は互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので、$a+b$ の値を半角数字で解答してください。

zyogamaya

公開日時: 2021年1月15日18:15 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

どの辺の長さも整数である$\triangle ABC$の面積を$S$とする。$S^2$の小数部分を求めよ。

解答形式

とりうるすべての小数部分を小さい順に都度改行、列挙してください。
例:
「0,1/2,1/3,1/6,1/√5」の場合、

0
0.5
0.'3'
0.1'6'
1/\sqrt{5}

akaddd

公開日時: 2023年7月14日16:52 / ジャンル: 数学 / カテゴリ: 大学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


以下の極限値を求めよ。

$$\lim_{n\rightarrow{\infty}}\biggr(\lim_{x\rightarrow{0}}\prod_{k=1}^n\frac{kx}{\sin(k+1)x}\biggr)
$$