a,bの組を全て求めよ!!!

CentiMentallyTouhu 採点者ジャッジ 難易度: 数学 > 中学数学
2022年8月27日20:05 正解数: 1 / 解答数: 3 (正答率: 100%) ギブアップ不可
整数問題 自然数 中学数学 中一 中二 中三

問題文

1 ︎ ︎ ︎ ︎ ︎ ︎1 ︎ ︎ ︎ ︎ ︎ ︎1
─ + ─ = ─
a ︎ ︎︎ ︎ ︎ ︎ ︎b ︎ ︎ ︎ ︎ ︎12
を満たす自然数a,bの組を全て求めよ。
︎ ︎ただし、a<bとする。

解答形式

(a,b)=(?,?),(?,?)……というようにして半角数字・記号で回答してください。()と()の間にも忘れずにコンマ(,)を入れてください。


スポンサーリンク

解答提出

この問題は出題者ジャッジの問題です。 出題者が解答を確認してから採点を行います。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています


問題文

2160nがある階乗と等しくなるような自然数nのうち、2番目に小さいもの、3番目に小さいものをそれぞれ求めよ。

解答形式

例えば、5,10のように、半角数字,半角数字と、左から2番目に小さいもの、3番目に小さいものと並べて記入してください。

2年前

1

問題文

数列{a_n}を,
a_1=log2 , a_(n+1)=(na_n+log(2n+1)+log2)/(n+1)
によって定める。
このとき, この数列の一般項 a_n および 極限値 lim(n→∞) (a_n-logn) をそれぞれ求めよ。

記述解答(大雑把で良い)でお願いします。

座標幾何-面積比

n01v4me 自動ジャッジ 難易度:
7月前

1

問題文

$a$と$r$を正の実数とし, $a>\frac{1}{2}$であるものとします.
放物線$K$と円$L$を次のように定めます.
$$K: y=x^2\,\,,\,\,L: x^2+(y-a)^2=r^2$$このとき, $K$と$L$は接しています.その接点を第2象限にあるものを$A$, 第1象限にあるものを$B$とし, 円$L$の中心を$P$, 直線$AP$と円$L$の$A$でない交点を$C$, $x$軸との交点を$Q$とします.また, △$ABC$の面積を$S$,
四角形$PQOB$の面積を$T$とするとき, 次の等式を満たしました.$$\frac{T}{S}=689$$$a$は1つの非負整数に定まりますのでその値を求めてください.

解答形式

非負整数を半角で入力してください.

無限級数1

tsx 自動ジャッジ 難易度:
20月前

1

問題文

級数
$$1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}-\frac{1}{7}-\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}-\frac{1}{15}-\frac{1}{16}+\cdots$$
の収束値を求めよ. ただし, この級数の第 $n$ 項の絶対値は $\dfrac{1}{n}$ であり, 各項の符号は $4$ 項ごとに交代する.

解答形式

収束値は $\fbox{A}\text{ - }\fbox{F}$ をいずれも自然数として最も簡単な形で $\displaystyle{\frac{\fbox{A}+\fbox{B}\sqrt{\fbox{C}}}{\fbox{D}}\pi+\frac{\log{\fbox{E}}}{\fbox{F}}}$
と 表されます. 文字列 $\fbox{A}\,\fbox{B}\,\fbox{C}\,\fbox{D}\,\fbox{E}\,\fbox{F}$ を解答してください.

ロープと面積

Hituzi 採点者ジャッジ 難易度:
2年前

2

問題文

長さnのロープがあるとき、ロープの始点と終点をくっ付けて出来る平面図形の最大の面積または近似値を求めよ。ただし、ロープは自由自在に曲げられ、無限の頂点を持つものとする。

解答形式

答えとその理由を書いてください。

無限ループ

lyala 自動ジャッジ 難易度:
2年前

2

問題文

A,B,Cの三人がこの順で時計回りに座って次のようなゲームをする。
(i)始め、AはCと書かれたカード、BはAと書かれたカード、Cは無地のカードとBのカードを持っている。
(ii)Aから時計回り順で、反時計回りに隣の人が持つカードから1つを等確率で選んで引く。
(iii)(ii)を繰り返して、自分の名前の書かれたカードを最初に引いた人を勝ちとする。
A,B,C,がが勝つ確率をそれぞれ、$a$,$b$,$c$とする。$a$,$b$,$c$をそれぞれ求めよ。

解答形式

半角英数字で(分子)/(分母)として既約分数で解答してください。(例)35/216
$a$を1行目、$b$を2行目、$c$を3行目に、解答してください。完答で正解とします。
8/25追記 解説を公開しました。

何進法の世界?【改訂版】

Gauss 自動ジャッジ 難易度:
3年前

3

問題文

$\quad$
鈍角三角形の三辺の長さが $40_{(N)},$ $399_{(N)},$ $401_{(N)}$ である.
自然数 $N$ の満たす条件を求めよ.
$$\quad$$

解答形式

半角で入力してください.
$N$ の値が一意に定まる場合は, その値を入力してください.
$N$ の値に範囲がある場合は, 最小値~最大値 という形式で入力してください.
ただし, 最大値が存在しない場合は, 最小値~ という形式で入力し, 複数の区間が存在する場合は最小値の小さいものから改行区切りで入力してください.
$\mathrm{ex})$ 解答が $N=17,~22≦N≦30,~330≦N$ の場合
  17
  22~30
  330~


問題文

$α=20°,β=5°$のとき、

$2sinαcos(α+β)+sinβ=\frac{\sqrt{ア}}{イ}$

解答形式

$ア$の数値を一行目に、$イ$の数値を二行目に書いてください。

ハノイの塔

KNKR_UT 自動ジャッジ 難易度:
3年前

2

問題文

3本の杭と中央に穴のあいた大きさの異なる$n$枚の円盤があります。いま、杭の1つにすべての円盤が小さいものが上にくるように積み重なっています(初期状態)。この状態から下記のルールを守りながら操作を行うとき、初期状態から到達し得る状態は何通りありますか。ただし初期状態も1通りと数え、また3本の杭は区別することとします。

例えば「左端の杭に大きさ1から$n$の全ての円盤が積み重なっている状態」を1つ、そこから操作を一回だけ行い、「左端に大きさ2から$n$の円盤、真ん中に大きさ1の円盤が積み重なっている状態」を1つ、のように状態の数をカウントします。また、「真ん中の杭に大きさ1から$n$の全ての円盤が積み重なっている状態」と、「右端の杭に大きさ1から$n$の全ての円盤が積み重なっている状態」のように杭が異なる場合もそれぞれ別の状態としてカウントします。

ルール
  • 円盤は一回に一枚ずつしか移動できない。
  • 小さな円盤の上に大きな円盤を乗せることはできない。

解答形式

半角英数字と下記の半角記号で答えてください。式中にスペースを含めないでください。

使える記号
  • 「+」加算
  • 「-」減算
  • 「*」乗算
  • 「/」除算(分数)
  • 「( )」かっこ
  • 「^」冪乗
  • 「!」階乗
3年前

4

問題文

初めに$N$枚のコインを持っています。下記のルールを守ってゲームを$m$回するとき、最後に持っているコインの枚数としてありえる枚数は$K$通りあります。このとき場合の数$K$を最大化するための$m$を答えてください。

ルール
  • コインゲーム筐体は$n$台あり一列に並んでいます。
  • 左から$i$番目の筐体でゲームをするにはコインを$i$枚消費します。
  • 1つの筐体につき一度しかゲームをできません。
  • ゲームに成功するとその筐体で消費した枚数の倍の枚数のコインが手に入ります。
  • ゲームに失敗するとコインは一枚も手に入りません。
  • 筐体は好きな順番でゲームをすることができます。
制約
  • $1 \le m \le n$
  • $2 \le n $
  • $ n^2 < N $

解答形式

半角英数と下記の半角記号で答えてください。

半角記号

()+-/^!

x^(n-1)/(x+y)!

平面図形①

pontikisamurai 自動ジャッジ 難易度:
2年前

2

問題文

四角形ABCD、四角形GHCFはそれぞれ正方形で、1辺の長さはそれぞれ10cm、4cmです。また、DCとFC、BCとHCはぴったり重なっているとする。また、四角形IBKJは長方形で、IJは2cm、IBは4cmとし、ABとIB、BCとBKはぴったり重なっているとする。更に、AJとDGの延長とBCとの交点をEとし、Gを通りΔADEの面積を2等分する線とADとの交点をP、Jを通りΔADEの面積2等分する線と、ADとの交点をRとする。さらにPGの延長とBCとの交点をQ、RJとABとの交点をSとする。PGとRJの交点をOとする。四角形OJEQの面積を求めよ。

解答方法

分数は/で表してください。
例)2分の9は 9/2 で表す。

円周率の証明

kouki0429 ジャッジなし 難易度:
3年前

2

問題文

円周率が3.25より小さいことを証明せよ

解答形式

中学~高校レベルで証明してください