a,bの組を全て求めよ!!!

CentiMentallyTouhu 採点者ジャッジ 難易度: 数学 > 中学数学
2022年8月27日20:05 正解数: 1 / 解答数: 3 (正答率: 100%) ギブアップ不可
整数問題 自然数 中学数学 中一 中二 中三

問題文

1 ︎ ︎ ︎ ︎ ︎ ︎1 ︎ ︎ ︎ ︎ ︎ ︎1
─ + ─ = ─
a ︎ ︎︎ ︎ ︎ ︎ ︎b ︎ ︎ ︎ ︎ ︎12
を満たす自然数a,bの組を全て求めよ。
︎ ︎ただし、a<bとする。

解答形式

(a,b)=(?,?),(?,?)……というようにして半角数字・記号で回答してください。()と()の間にも忘れずにコンマ(,)を入れてください。


スポンサーリンク

解答提出

この問題は出題者ジャッジの問題です。 出題者が解答を確認してから採点を行います。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています


問題文

2160nがある階乗と等しくなるような自然数nのうち、2番目に小さいもの、3番目に小さいものをそれぞれ求めよ。

解答形式

例えば、5,10のように、半角数字,半角数字と、左から2番目に小さいもの、3番目に小さいものと並べて記入してください。

無限級数1

tsx 自動ジャッジ 難易度:
15月前

1

問題文

級数
$$1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}-\frac{1}{7}-\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}-\frac{1}{15}-\frac{1}{16}+\cdots$$
の収束値を求めよ. ただし, この級数の第 $n$ 項の絶対値は $\dfrac{1}{n}$ であり, 各項の符号は $4$ 項ごとに交代する.

解答形式

収束値は $\fbox{A}\text{ - }\fbox{F}$ をいずれも自然数として最も簡単な形で $\displaystyle{\frac{\fbox{A}+\fbox{B}\sqrt{\fbox{C}}}{\fbox{D}}\pi+\frac{\log{\fbox{E}}}{\fbox{F}}}$
と 表されます. 文字列 $\fbox{A}\,\fbox{B}\,\fbox{C}\,\fbox{D}\,\fbox{E}\,\fbox{F}$ を解答してください.

座標幾何-面積比

n01v4me 自動ジャッジ 難易度:
59日前

1

問題文

$a$と$r$を正の実数とし, $a>\frac{1}{2}$であるものとします.
放物線$K$と円$L$を次のように定めます.
$$K: y=x^2\,\,,\,\,L: x^2+(y-a)^2=r^2$$このとき, $K$と$L$は接しています.その接点を第2象限にあるものを$A$, 第1象限にあるものを$B$とし, 円$L$の中心を$P$, 直線$AP$と円$L$の$A$でない交点を$C$, $x$軸との交点を$Q$とします.また, △$ABC$の面積を$S$,
四角形$PQOB$の面積を$T$とするとき, 次の等式を満たしました.$$\frac{T}{S}=689$$$a$は1つの非負整数に定まりますのでその値を求めてください.

解答形式

非負整数を半角で入力してください.

2年前

1

問題文

数列{a_n}を,
a_1=log2 , a_(n+1)=(na_n+log(2n+1)+log2)/(n+1)
によって定める。
このとき, この数列の一般項 a_n および 極限値 lim(n→∞) (a_n-logn) をそれぞれ求めよ。

記述解答(大雑把で良い)でお願いします。

2年前

4

問題文

初めに$N$枚のコインを持っています。下記のルールを守ってゲームを$m$回するとき、最後に持っているコインの枚数としてありえる枚数は$K$通りあります。このとき場合の数$K$を最大化するための$m$を答えてください。

ルール
  • コインゲーム筐体は$n$台あり一列に並んでいます。
  • 左から$i$番目の筐体でゲームをするにはコインを$i$枚消費します。
  • 1つの筐体につき一度しかゲームをできません。
  • ゲームに成功するとその筐体で消費した枚数の倍の枚数のコインが手に入ります。
  • ゲームに失敗するとコインは一枚も手に入りません。
  • 筐体は好きな順番でゲームをすることができます。
制約
  • $1 \le m \le n$
  • $2 \le n $
  • $ n^2 < N $

解答形式

半角英数と下記の半角記号で答えてください。

半角記号

()+-/^!

x^(n-1)/(x+y)!

平面図形①

pontikisamurai 自動ジャッジ 難易度:
2年前

2

問題文

四角形ABCD、四角形GHCFはそれぞれ正方形で、1辺の長さはそれぞれ10cm、4cmです。また、DCとFC、BCとHCはぴったり重なっているとする。また、四角形IBKJは長方形で、IJは2cm、IBは4cmとし、ABとIB、BCとBKはぴったり重なっているとする。更に、AJとDGの延長とBCとの交点をEとし、Gを通りΔADEの面積を2等分する線とADとの交点をP、Jを通りΔADEの面積2等分する線と、ADとの交点をRとする。さらにPGの延長とBCとの交点をQ、RJとABとの交点をSとする。PGとRJの交点をOとする。四角形OJEQの面積を求めよ。

解答方法

分数は/で表してください。
例)2分の9は 9/2 で表す。

4次関数の性質

zyogamaya 自動ジャッジ 難易度:
2年前

2

問題文

4次関数のグラフ$C:y=f(x)$は2つの変曲点$\mathrm{P},\mathrm{Q}$をもち、1本の複接線が引けて、異なる2点$\mathrm{A}(\alpha,f(\alpha)),\mathrm{B}(\beta,f(\beta))$が接点となる。また$f(x)$の4次の係数は1である。このとき、$\displaystyle\frac{d^3}{dx^3}f(x)=0$の解を$x=\gamma$、$\mathrm{C}(\gamma,f(\gamma))$、複接線を$l_1$、直線$\mathrm{PQ}$を$l_2$、$C$上の点$\mathrm{C}$における接線を$l_3$、$l_2$と$C$の交点のうち$\mathrm{P},\mathrm{Q}$と異なる点をそれぞれ$\mathrm{R},\mathrm{S}$、$l_3$と$C$の交点のうち$\mathrm{C}$と異なる点をそれぞれ$\mathrm{D},\mathrm{E}$とおく。ただし$x$座標について、$\mathrm{A}$より$\mathrm{B}$、$\mathrm{P}$より$\mathrm{Q}$、$\mathrm{R}$より$\mathrm{S}$、$\mathrm{D}$より$\mathrm{E}$の方が大きいとする。

(1)直線$l_1,l_2,l_3$は互いに平行であることを示せ。

(2)線分長の2乗比$\mathrm{AB}^2:\mathrm{PQ}^2$を求めよ。

(3)線分長の2乗比$\mathrm{RS}^2:\mathrm{DE}^2$を求めよ。

(4)直線$l_2$と$C$で囲まれる部分の面積$S$を$\alpha,\beta$で表わせ。

解答形式

(2),(3),(4)の答えはそれぞれ一桁の自然数a,b,c,d,e,f,g,h,i,jを用いて以下のように表されます。
センター、共通テスト形式で埋め、10桁の自然数abcdefghijを答えてください。
$\mathrm{AB}^2:\mathrm{PQ}^2=a:b$
$\mathrm{RS}^2:\mathrm{DE}^2=c:d$
$S=\displaystyle\frac{e\sqrt{f}}{ghi}(\beta-\alpha)^j$

平方数

zyogamaya 自動ジャッジ 難易度:
3年前

2

問題文

$x,y$を自然数とする。$x^2+8y$と$y^2+8x$がともに平方数になるような$x,y$の組$(x,y)$をすべて求めよ。

解答形式

例えば、$(x,y)=(1,2),(13,4),(51,16)$と答えたい場合は

12
134
5116

と入力してください。解の組は$x$の値が小さい順に並べてください。$x$の値が同じで$y$の値が異なる場合は$y$の値が小さい方を先に入力してください。

京大オマージュ

Gauss 採点者ジャッジ 難易度:
2年前

2

問題文

$\sin1°$ は有理数か。

解答形式

証明を簡潔に記述してください。

円周率の証明

kouki0429 ジャッジなし 難易度:
3年前

2

問題文

円周率が3.25より小さいことを証明せよ

解答形式

中学~高校レベルで証明してください

求長問題20

Kinmokusei 自動ジャッジ 難易度:
3年前

2

問題文

半円と平行四辺形が図のように配置されています。赤い三角形の面積が3のとき、青い線分の長さを求めてください。

※平行四辺形の一辺と半円は接する。

解答形式

$$x=\fbox{ア}\sqrt{\fbox{イウ}-\fbox エ\sqrt{\fbox オ}}$$と表せるので、文字列 アイウエオ を解答してください。ただし、$\fbox ア~\fbox オ$には0以上9以下の整数が入ります。

サインコサイン

aoneko 採点者ジャッジ 難易度:
3年前

4

問題文

$y=2sinαcos(α+β)+sinβ$とする

(1)$α=30°,β=15°$のときの$y$の値は

$\frac{\sqrt{ア}+\sqrt{イ}}{ウ}$
(2)$α=20°,β=5°$のときの$y$の値は

$\frac{\sqrt{エ}}{オ}$

(1)が分からない場合はヒント1を見よ
(2)が分からない場合はヒント2を見よ

解答形式

自由。どの数字がどの文字に対応してるかさえ分かるようにしてあればOK。