ΠMC002 F

Furina 自動ジャッジ 難易度: 数学 > 高校数学
2023年10月27日22:00 正解数: 16 / 解答数: 31 (正答率: 51.6%) ギブアップ不可
この問題はコンテスト「ΠMC002」の問題です。

問題文

以下を満たす正の合成数 $N$ としてあり得る最大値と最小値の和を解答してください.
・$N$ のすべての正の約数の並び替え $d_1,d_2,\cdots,d_t$ であって,任意の $k=1,2,\cdots,t-1$ に対して
$$\dfrac{(d_{k+1})^N+1}{d_k}$$
 が整数となるようなものが存在する.

解答形式

最大値と最小値の和を解答してください.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

ΠMC002 B

Furina 自動ジャッジ 難易度:
13月前

51

問題文

$AB=100,AC=200$ なる $\triangle ABC$ において,$A$ 類似中線と $BC$ の交点を $X$ とします.$BX,CX$ がいずれも正整数値であるとき,$AX$ の取り得る正整数値の総和を求めてください.

解答形式

$AX$ の取り得る正整数値の総和を解答してください.

ΠMC002 A

Furina 自動ジャッジ 難易度:
13月前

53

問題文

素数 $p$ に対して,$\dfrac{1}{p}$ を小数表記したときに循環する長さを $\Pi(p)$ で表します.正整数 $n$ に対し,$\Pi(p)=n$ なる $p$ のうち最小のものを $M(n)$ とするとき,以下の値を求めてください.ただし,有限小数の場合循環はしないとします.
$$M(1)+M(2)+M(3)+M(4)+M(5)+M(6)$$

解答形式

答えとなる数字のみを解答してください.

ΠMC002 C

Furina 採点者ジャッジ 難易度:
13月前

17

問題文

次の条件を満たす正整数 $a,b$ の組を $1$ つ求め,$a,b$ をこの順につなげて解答してください.
・$a>150$
・$a-b=2^7$
・$a$ に登場する数字の集合を $X$,$b$ に登場する数字の集合を $Y$ ,$ab$ に登場する数字の集合を $Z$とすると(例: $a=1233445$ のとき $X={1,2,3,4,5}$),$|X|=3,Y\subset X,|Z|=3,X=Z$ が成立する.

解答形式

条件を満たす正整数 $a,b$ の組を $1$ つ解答してください.

ΠMC002 E

Furina 自動ジャッジ 難易度:
13月前

125

問題文

整数 $n$ について,$\dfrac{10^n+11}{3}$ が平方数になるものは存在しますか?存在しないなら $-1$ を解答してください.存在する場合,最小の $n$ を解答してください.ただし答えは非常に大きくなる可能性があるので,$n$ を素数 $998244353$ で割ったあまりを解答してください.

解答形式

存在しないなら $-1$ を解答してください.存在する場合,最小の $n$ を解答してください.ただし答えは非常に大きくなる可能性があるので,$n$ を素数 $998244353$ で割ったあまりを解答してください.

ΠMC002 D

Furina 自動ジャッジ 難易度:
13月前

23

問題文

$AB=2,BC=3,CA=4$ なる $\triangle ABC$ について,ナーゲル点を $N$,ジュルゴンヌ点を $G$ とするとき,$NG$ は互いに素な正整数 $a,c$ と平方因子を持たない正整数 $b$ を用いて $\dfrac{a\sqrt{b}}{c}$ と書けるので,$a+b+c$ を解答してください.

解答形式

$a+b+c$ を解答してください.

ΠMC002 G

Furina 自動ジャッジ 難易度:
13月前

14

問題文

三角形 $ABC$ について,内心を $I$ とし,$AD=AB=EB$ なる点 $D, E$ をそれぞれ辺 $AC, BC$ 上にとります. いま,円 $CDE$ と $ID, IE$ の交点をそれぞれ $P(\neq D), Q(\neq E)$ とすると,$AP$ は円 $CDE$ に接しました. $AI$ と円 $ABC$ の交点を $M(\neq A)$ とすると,$AI×IM=233, IP=19$ が成立しました. $MQ$ の長さは互いに素な正整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を求めてください.

解答形式

$a+b$ を求めてください.

C

nmoon 自動ジャッジ 難易度:
12月前

66

問題文

正整数 $a , b$ の最大公約数を $g(\not=1)$,最小公倍数を $l$ としたとき,以下が成立しました.

$$\dfrac{l - 1}{g - 1} = 100$$

このときの $(a , b)$ の組としてあり得るものを全て求め,$a + b$ の総和を求めてください.

解答形式

正整数で答えて下さい.

OMC不採用問題改題その2

bzuL 自動ジャッジ 難易度:
8月前

18

問題文

$f(n)=n ^{15}+21n^{10}+147n^5+343$ とします.
正整数 $n$ に対して, $f(n)$ が $5^m$ で割り切れるような最大の非負整数 $m$ を $g(n)$ と定めます.$10000$ 以下の正整数 $k $であって $g(n)=k $ を満たす正整数 $n$ が存在するような $k$ の総積を $3343$ で割った余りを解答してください.ただし,$3343$ は素数です.

解答形式

非負整数を解答してください.

円形じゃんけん

J_Koizumi_144 自動ジャッジ 難易度:
10月前

14

問題文

$10$人で輪になってじゃんけんをするとき,どの隣り合う$3$人も「あいこ」にならないような手の出し方は何通りありますか?

解答形式

半角数字で入力してください.

SMC100-94

MARTH 自動ジャッジ 難易度:
12月前

8

$100\times 100$ のマス目があります. 上から $i$ 行目, 左から $j$ 列目のマスを $100(i-1)+j$ と呼ぶことにします. SMC 君は一般的な $6$ 面サイコロを $10000$ 回振り, $i$ 回目に振って出た目をマス $i$ に書き込みます. このとき, 以下の条件を満たす確率を $p$ とするとき, $6^{10000}p$ は整数になるので, 素数 $3299$ で割った余りを求めてください.

  • 任意の行について, その行のマスに書かれた整数の総和は偶数.
  • 任意の列について, その列のマスに書かれた整数の総和は $3$ の倍数.

自作問題1

mahiro 自動ジャッジ 難易度:
13月前

14

問題文

$$\angle{ADB}=\angle{ADC}=\angle{CDB}=90^°$$なる四面体 $ABCD$ の外接球に関して、体積を $V$ 表面積を $S$ としたとき、非負整数 $p$ を用いて、$V=p\pi,S=p\pi$ が成り立ちました。
このとき、四面体 $ABCD$ の体積の最大値の2乗を求めてください。

解答形式

半角数字で入力して下さい。

OMC没問2

natsuneko 自動ジャッジ 難易度:
12月前

8

問題文

正整数 $n$ に対して, $n^i \equiv 1 \ (\textrm{mod} \ 25 )$ を満たす最小の正整数 $i$ を $f(n)$ とします. (ただし, このような $i$ が存在しない場合は, $f(n) = 0$ とします.) このとき, $1 \leq n \leq 10000$ の範囲で $f(n)$ が最大値をとるような $n$ の総積を $1000$ で割った余りを解答して下さい.

解答形式

非負整数値を解答して下さい.