図のようなあるへこみのない立体の展開図があります。同じ色の辺の長さは等しくなっていて、青の辺の長さは3cmです。また、青の辺2本と黒の辺1本でできている三角形は直角二等辺三角形で、緑の辺2本と黒の辺1本でできている三角形の面積は13.5㎠です。赤い辺6本でできている六角形は正六角形で、その面積は黒い辺を一辺とする正三角形の面積の2倍です。 この展開図をくみたててできる立体の体積は何㎤ですか。
半角数字で入力してください。 例)524
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$2000$ 以下の非負整数 $a$ に対し,数列 $c_{n}$ が以下をみたします. $$c_{1}=a, c_{2}=2000-a, c_{n+2}=c_{n+1}+c_{n}$$ このとき,$c_{2^{4333}}$ が $47^2$ の倍数となるような $a$ としてありうる値の総和を解答してください.
半角数字で解答してください.
関数列 $\{f_n\}_{n=0,1,\dots}$ が以下を満たします.
また, 実数列$\{A_n\}_{n=1,2,\dots}, \{B_n\}_{n=1,2,\dots}$を以下のように定義します.
$B_{24}$ の値を求めてください.
正の実数 $x,y,z$ が $xyz=x+y+z+2$ を満たしています.このとき, $x+4y+9z$ の最小値を求めてください.
答えを入力してください.
$a_1+2a_2+3a_3=n$ を満たす非負整数の組 $(a_1,a_2,a_3)$ 全てについて, $$\frac{(a_1+a_2+a_3)!}{a_1!\times a_2!\times a_3!}$$ の総和を $f(n)$ とします. $f(n)\equiv 6 \pmod{12}$ を満たす最小の正整数 $n$ を求めてください.
双六でnマス目に止まる確率を求めよ。 ただし、n≦10、さいころは1個とする。
初投稿で難易度設定とか解答の作り方とかよく分かってないので間違っていたらすみません。 ・アルファベット&記号は全て半角(ただし、マイナスについては基本的に「ー」を使い、aのb-1乗のような場合では「-」を使います。) ・a分のbのc乗→(b/a)^c ・b/a+d/cのようなものは1項にまとめてください。 ・場合分けがある場合は n≦aのとき(解答) b≦n≦cのとき(解答) といったように改行して答えてください。
四角形 $ABCD$ と三角形 $XYZ$ は以下の条件を満たします. $$AD=505, \hspace{1pc} BC=507, \hspace{1pc} AB=CD, \hspace{1pc} \angle ABC=60^\circ, \hspace{1pc} \angle DCB=80^\circ$$ $$YZ=1, \hspace{1pc} XY=XZ, \hspace{1pc} \angle YXZ=40^\circ$$ このとき, 四角形 $ABCD$ の面積は三角形 $XYZ$ の面積の何倍ですか.
答えは正の整数値となるので, その整数値を半角で入力してください.
追記: 若干日本語がおかしかったため編集しました. 解答には影響はないと思われます. 一応ヒント2に元の問題文を残してあります. 以上, よろしくお願いします.
実数に対して定義され実数値をとる関数$f$であって、任意の実数$x,y$に対して$$f(f(x)+y)=2f^{[|y|]}(x)+f^{[|x|]}(y)$$を満たすものを全て求めてください。ただし、$f^{s}(t)$は$$f^{s}(t)=f(f(f(…f(t)))…),f^0(x)=0$$($f$が$s$個)、$[α]$は$α$以下の最大の整数とします。
*解答だけで構いません。
$4$ 点 $\mathrm{A,B,C,D}$ が $\mathrm{AB=BC=CD}=1,\mathrm{DA}=2$ を満たし、さらに線分 $\mathrm{BC}$ と線分 $\mathrm{DA}$ が点 $\mathrm{P}$ で交わっている。線分 $\mathrm{AP}$ の長さが最大となるとき、
$$ \mathrm{AC}=\frac{\sqrt{\fbox{アイ}-\sqrt{\fbox{ウエオ}\ }+\sqrt{\fbox{カキクケ}+\fbox{コサ} \sqrt{\fbox{シスセ}\ }\ }\ }}{\fbox{ソ}} $$
である。ただし、$\mathrm{XY}$ で線分 $\mathrm{XY}$ の長さを表すものとする。
必要であれば以下の事実を用いてよい。
・実数 $a,b,c$(ただし $a\neq-64$ )について、$\displaystyle p=\frac{b+c-a^2}{a+64},q=64p+a^2-b$ とおくと、$x$ についての恒等式
$$ 1024x^4+64ax^3+bx^2+2cx+p^2-q=(32x^2+ax+p)^2-q(x-1)^2 $$
が成り立つ(これは、右辺を展開して係数比較することで簡単に確かめられる)。
ア〜ソには、0から9までの数字または「-」(マイナス)が入る。 文字列「アイウエオカキクケコサシスセソ」を半角で1行目に入力せよ。 ただし、分数はそれ以上約分できない形で、かつ根号の中身が最小になるように答えよ。
$(1)$ 方程式 $12x^2+4xy-21y^2=32x-32y+3$ の整数解 $(x,y)$ を求めよ. $(2)$ 不等式 $z^2\lt a(a+1)z-a^3$ の奇数解 $z$ が二つとなる実数 $a$ の範囲を求めよ.
$a^{xy}$ がとりうる整数の和を半角数字で入力してください.
次の関数が $|x-a|\leqq 1$ のもとで負の値と素数の値域幅をとるとき,$\sqrt b$ の平均を求めよ.
$100$ 倍した整数部分を半角数字で入力してください.
※ 問題を一部修正しました.今後も手直しが続く可能性があります.
次の関数 $x,y$ における定数 $c$ の命題「つねに $x\geqq 3$ ならば $y$ の値域幅は $c$ 以上」は真か.$$0\leqq t\leqq 2c,\quad x=|t-c|+|t-3|+|t-5|,\quad y=|||t-1|-2|-3|$$
逆,裏,対偶それぞれの整数反例の和を半角数字で入力してください.
$2024!$の約数の和は$2025$の倍数であることを示せ。