全 6 件
感想を投稿してみましょう!この感想は正解した人だけにしか見えません!
この問題を解いた人はこんな問題も解いています
34人の生徒を3人の班と4人の班に分けたところ、4人の班は3人の班より5つ多くできた。3人の班の数と、4人の班の数をそれぞれ求めなさい
半角で、3人の班=Xで答えるものとする
次の方程式の整数解を求めよ。 ただし、$p, q$は非負整数である。 $$ x^2-15x+3^p-2^q=0 $$
半角数字で小さい順につなげて入力してください。 例 $x=-4,-1,0,3,4$の時 -4-1034
三角形$ABC$は$|AB|=84$、$|BC|=|CA|=72$を満たす二等辺三角形です。この三角形の垂心を$H$、頂点$A, B, C$から延びる垂線の足をそれぞれ$D,E,F$と置きます。さらに、直線$CF$上に$|DF|=|DG|$を満たす$F$でない点$G$をとります。この時、四角形$DFEG$の面積は互いに素な正整数$p,r$と平方因子を持たない数$q$を用いて$\dfrac{p\sqrt{q}}{r}$と表されるので、$p+q+r$を解答してください。ただし、$|AB|$で$AB$間の距離を表すものとします。
半角数字で解答してください。
五角形 $ABCDE$ は $\angle{A}=90°$ で,四角形 $BCDE$ は $1$ 辺の長さが $8$ の正方形になっています.$AC$ と $BD$ の交点を $P$ とし,$AP=PQ$ となる点 $Q$ を辺 $DE$ 上に取りました.$\angle{ACQ}=45°$ であるとき,$PQ$ の長さの $2$ 乗を求めてください。
非負整数を半角で入力してください。
$AB=AC$なる鋭角二等辺三角形$ABC$において$AB$,$BC$の中点をそれぞれ$M$,$N$とし、$MC$の垂直二等分線と$AN$の交点を$P$とします。$\triangle ABC$の面積は$15$であり、$AP:PN=4:1$であるとき、$BC^4$を解答してください。
一辺の長さが1である正方形を $n$ 個、頂点が合うように辺同士でつなげてできる図形を $n$-オミノ とする。ただし、$n=1$ の場合は1つの正方形である。また、$n$-オミノが多角形をなすとき($n$-オミノで囲まれた領域が存在しないとき)、これを $n$-オミノ多角形 とする。
$\rm{S_n}$が$n$-オミノ多角形であるとき、$\rm{S_n}$の辺の数が2024となるような $n$ の最小値を求めよ。
答えは整数となるので、半角で入力してください。
$\:2024≧a>b>c≧1\:$なる正整数の組$\:(a,b,c)\:$であって、$x^a+x^b+x^c+1\:$が$\:(x+1)\:$を因数に持つようなものは何通りあるか解答してください。
正の実数$x,y,z$が$$(x+1)y^2=(x−1)z^2=\frac{3}{5}xyz$$ を満たすとき、 $$\frac{z}{y}=?$$
例)?に入る数値を入力してください。
$a^n+b^m=2024(a>b>0,n>1,m>1)$である自然数の組$(a,b,n,m)$をすべて求めよ。
解答と解答を改行区切りで入力してください。
(a,b,n,m) という形で解答をしてください。 複数ある場合は前述の通り改行区切りで入力してください。 また、aが小さい順に、aが同じ場合はbが小さい順に解答してください。
こちらのミスで自動判定の解答が指定した回答形式とあっていませんでした。すみませんでした。
以下の式を満たす素数の組$(a,b,c,d)$について、$abcd$の総和を求めよ。 $$ 4a²+b²+c²=d² $$
$1$つの整数が書かれた$15$枚のタイルが横$1$列に敷き詰められています。以下の条件を満たす数字の書き方は何通りあるか答えてください。
・タイルには$36$の正の約数のうちいずれかが書かれている。 ・任意の隣り合う$2$枚のタイルに書かれた数の積は平方数でない。 ・任意の隣り合う$3$枚のタイルに書かれた数の積は平方数である。
半角数字で答えてください。
$n$を正の整数とします。連続する$10$個の整数の積$n(n+1)(n+2)(n+3)…(n+9)$が$2025^3$で割り切れるような$n$としてあり得る最小のものを求めてください。
$n$の値を半角で入力してください。