全問題一覧

カテゴリ
以上
以下

One to Six

sapphire15 自動ジャッジ 難易度:
4年前

37

問題文

$1\thicksim6$までの数字を$1$回ずつ使って空欄を埋め以下の等式を成立させてください。解が存在しない場合はその旨を答えてください。

$(1)\square\square\times\square=\square\square\square$
$(2)\square\square+\square\square=\square\square$

解答形式

1行目に$(1)$、2行目に$(2)$の解を入力してください。
等式をすべて半角で入力してください。ただし、「$\times$」はx(小文字のエックス)で代用するものとします。
存在しない場合は-1を入力してください。
また、解が複数存在する場合はどれを回答してもかまいません。

(例)
$3\times7=21$と入力する場合 3x7=21
$3+7=21$と入力する場合 3+7=10

ナゾナゾ3

BUTATA 自動ジャッジ 難易度:
4年前

17

問題文

505→助けて
707→大笑い
0.00→?

解答形式

例)ひらがなで入力してください。

ナゾナゾ2

BUTATA 自動ジャッジ 難易度:
4年前

27

問題文

3704→穴
7734→地獄
77345→?

解答形式

例)ひらがなで入力してください。

既約モニック多項式の個数

shakayami 自動ジャッジ 難易度:
4年前

21

問題文

$\mathbb{F}_7$を位数7の有限体とする。このとき$\mathbb{F}_7$係数の3次多項式であって既約かつモニックであるものはいくつ存在するか?

解答形式

半角数字で入力してください。

Q197

Soft-Head 自動ジャッジ 難易度:
4年前

1987


左から何番目でお答えください。

ナゾナゾ1

BUTATA 自動ジャッジ 難易度:
4年前

26

問題文

0.773414
どこに残されたメッセージでしょうか?

解答形式

例)ひらがなで入力してください。

Corner Cases

halphy 自動ジャッジ 難易度:
4年前

22

問題文

次の命題の真偽を答えなさい。

  1. $0\leq a, b < 10$ を満たす実数 $a,b$ を $10$進小数 で表したものをそれぞれ $a_0.a_1a_2a_3\cdots, \;b_0.b_1b_2b_3\cdots$ とするとき,ある $k=0,1,\cdots$ に対して $a_k\neq b_k$ ならば $a\neq b$ である。

  2. $\vec{a}_1, \vec{a}_2$ を平行(*)でない平面ベクトルとする。実数 $k_1, k_2, k_1', k_2'$ に対して
    \begin{equation}
    k_1\vec{a}_1+k_2\vec{a}_2=k_1'\vec{a}_1+k_2'\vec{a}_2
    \end{equation}が成り立つならば $k_1=k_1'$ かつ $k_2=k_2'$ である。

  3. 実数全体を定義域とする微分可能な実数値関数 $f(x)$ が
    \begin{equation}
    f'(x)=x
    \end{equation}を満たすとする。このとき,$f(x)$ はある実数 $a$ を用いて
    \begin{equation}
    f(x)=\int_a^x t dt
    \end{equation}と表せる。

  4. 数列 $\{a_n\}, \{b_n\}$ は $n\to\infty$ である実数に収束するとする 。任意の $n$ に対して $b_n\neq 0$ ならば,数列 $\displaystyle{\left\{\frac{a_n}{b_n}\right\}}$ も収束する。

注意

  • *この問題では,平面ベクトル $\vec{a}_1, \vec{a}_2$ が平行であるとは $\vec{a}_1=k\vec{a}_2$ となる実数 $k\neq 0$ が存在することをいいます。
  • (2020/6/11 15:40 更新)命題 1 の条件を変更しました。正解には影響ありません。

解答形式

$k=1,2,3, 4$ に対して,命題 $k$ が真なら T を,偽なら F を第 $k$ 行に出力してください。

logの重複合成

shakayami 自動ジャッジ 難易度:
4年前

14

問題文

$f_m(x)$という関数列を$f_1(x)=\log{x},f_{m+1}=\log{f_m(x)}$と定義します。ただし$\log{x}$は自然対数です。
具体的には$f_1(x)=\log{x},f_2(x)=\log{\log{x}},f_3(x)=\log{\log{\log{x}}},\ldots$となります。
このとき、
$$\lim_{n\to\infty}\{f_m(3^n)-f_m(2^n)\}=0$$
となるような最小の自然数$m$を求めてください。

解答形式

半角数字で入力してください。

65537は素数か?

masorata 自動ジャッジ 難易度:
4年前

12

問題文

$65537=2^{16}+1$ が素数かどうか、計算機を使わずに判定したい。以下では $p$ を3以上の素数として、⑴から⑸の問いに答えよ。

⑴ $2^p$ を $p$ で割ったあまりは $p$ によらないことを示し、その値を求めよ。
⑵ $65537$ が $p$ で割り切れるとき、$2^n$ を $p$ で割ったあまりが $1$ になるような最小の自然数 $n$ を求めよ。
⑶ $65537$ が $p$ で割り切れるとき、$p$ を $32$ で割ったあまりとしてあり得る値をすべて求めよ。
⑷ $ p < \sqrt{65537}$ をみたす $p$ であって、$p$ を $32$ で割ったあまりが⑶で求めた数になるようなものをすべて求めよ。
⑸ 以上の結果から、$65537$ が素数かどうか判定せよ。

解答形式

以下の指示に従って、すべて半角数字で入力せよ。

⑴から⑷までの答えはいずれも非負整数である。
⑴の答えを1行目に入力せよ。
⑵の答えを2行目に入力せよ。
⑶の答えは1つずつ改行して3,4,......i 行目に小さい順に入力せよ。
⑷の答えも1つずつ改行してi+1,i+2, ......j行目に小さい順に入力せよ。
最後に⑸の答えとして、$65537$ が素数であれば1を、そうでなければ0を入力せよ。

20/06/19: 解答の一部にミスがあったため修正しました。

EasyNumber.2 二つの自然数

PCTSMATH 自動ジャッジ 難易度:
4年前

19

問題文

ある二つの自然数a,bは積が和より1000大きくどちらかが立方数だった
この時a,bの組を全て求めよ

解答形式

a<bとした時のaを小さい順に半角数字で解答せよ
例 (4,7)(8,91)の時は48

EasyNumber.1 サイコロ勝負

PCTSMATH 採点者ジャッジ 難易度:
4年前

2

問題文

AさんBさんの二人の人がいる
この時サイコロをAさんが投げる
1.2.3が出たら次回は次の人がサイコロを投げる
4.5が出たら次回も同じ人が投げる
6が出たら勝利である
N回目でAが勝利する確率を求めよ

解答形式

Nについての式を求めよ

Number.1 パラメーター

PCTSMATH 採点者ジャッジ 難易度:
4年前

1

問題文

2つのパラメーター(0,0)
がある
一回の操作でどちらかの数字を1増やすか減らすかする
それぞれ1/4の確率で起こる
この時操作をした回数が2n(nは自然数)の時パラメーターが(0,0)になる確率はnが大きければ大きいほど低くなることを証明せよ

解答形式

証明形式