てれれーれー、てれれーれーれれー
てれれれ、てれれれ、てーれーれれー
てれれっれ、れっれ、れーれ↗れーれれれー
例)カタカナで入力してください。
自然数$a,b,c,d$は
$$
a\neq b
$$ $$
(a+b)(a-b)+(ad-bc)=0
$$ $$
bc-a^2=1
$$
を満たしています.このとき
$$
\frac{c-d}{a-b}
$$
の取り得る値を全て求めてください.
半角数字で解答してください.複数ある場合は小さい順に一行ずつ入力してください.
Ex:答えが「1」と「-$\frac{3}{89}$」と「100」のとき
-3/89
1
100
と解答してください.
枝と葉からなる $2$ 次元的な植物を考えます。植物は,以下の条件を満たすような枝 $s$ 本と葉 $l$ 枚からなります。
条件
この植物の重さ $n$ は $n=2s+l$ で表されます。例えば,重さ $4$ の異なる植物をすべて描いたものは下図のようになります。
ここで,ある点に着目したときに,その点から出ている葉と枝の並びが異なるものは区別することに注意しましょう。
重さ $n$ の植物が $t_n$ 種類あるとき
\begin{equation}
\sum_{n=0}^{\infty}\frac{t_n}{3^n}
\end{equation}の値を求めなさい。ただし,級数が収束することは証明なしに用いてかまいません。
答えは正の有理数 $r$ です。
実数$ a $ を $a=\sqrt[3]{1+\sqrt2} +\sqrt[3]{1-\sqrt2}$ で定める。以下の問いに答えよ。
⑴ $a^3+3a-2=0$ であることを示せ。また、$0<a<2$ を示せ。
⑵ $x$ について以下の恒等式が成り立つことを示せ。
$$
x^4+4x-3=(x^2+a)^2-2a\left(x-\frac{1}{a}\right)^2
$$
⑶ 4次方程式 $x^4+4x-3=0$ の実数解を $a$ を用いて表せ。
⑶のみ解答せよ。解は2つ存在し、
$$
x= -\sqrt{\frac{ア}{イ}}\ \pm \ \sqrt{\sqrt{\frac{ウ}{エ}}-\frac{オ}{カ}}
$$
の形である。ア~カのそれぞれには1から9までの自然数または文字$a$が入る。
ア~カに当てはまる数字または文字を、順にすべて半角で入力せよ。
たとえばア=2、イ=7、ウ=3、エ=5、オ=8、カ=$a$ と解答する場合は、
「27358a」と入力せよ。
ある | なし |
---|---|
かめ | つる |
うし | ぶた |
ねこ | いぬ |
「へび」「くらげ」がそれぞれ「ある」「なし」のどちらであるかを、それぞれ一行目・二行目に答えてください。
それぞれの行は ある
なし
のいずれかで答えてください。