数学の問題一覧

カテゴリ
以上
以下

001

1024 自動ジャッジ 難易度:
2年前

15

問題文

$nを2以上の整数とする。n!を,n^3-nで割った余りと,n^nで割った余りが等しくなるnを全て求めよ。$

解答形式

$半角数字でnの値が小さい順に一行ずつ解答してください。$
$(例)n=2,3,4となったとき$
2
3
4

C

natsuneko 自動ジャッジ 難易度:
16月前

15

問題文

問題の数値設定に不備があったため、数値設定を変更します。申し訳ありません。(三角形 $DEH$ の面積を $9$ から $3$ に変更しました。)

鋭角三角形 $ABC$ の垂心を $H$, 外心を $O$ とします. また, 直線 $BH$ と線分 $AC$ の交点を $D$, 直線 $CH$ と線分 $AB$ の交点を $E$ とします. そして, 線分 $DE$ の中点を $N$, 直線 $HN$ と直線 $AO$ の交点を $X$ とします. このとき, $A, X, O$ はこの順に並び, $AX = 3, XO = 5$ が成立しました. また, 三角形 $DEH$ の面積が $3$ であったとき, 三角形 $ABC$ の面積を求めてください.

解答形式

答えは, 正整数 $a, b$ を用いて $\sqrt{a} + b$ と表されるので, $a+b$ の値を半角数字で解答してください.

整数問題②

lucy 自動ジャッジ 難易度:
5年前

15

問題文

$p^2+q^2+r^2+s^2=t^4+1$を満たす素数$(p,q,r,s,t)$の組を全て求めよ。但し$p\leq q\leq r\leq s$とする。

解答形式

一行目に式を満たす組が何組あるか答えよ。また、そのような組の中で、$t$が最大であるものについて、$p,q,r,s,t$の値をそれぞれ2行目、3行目、4行目…へ記入せよ。いずれも数字のみ記入せよ。

(本当は解き方まで見たいですが、個別判定が大変なのでこの形式にします。できれば、なぜそうなるかもしっかり考えてください。)

クソ問#Final

Hensachi50 自動ジャッジ 難易度:
3月前

15

問題文

$327498^{789798}の1000000桁を求めよ。$

解答形式

半角英数字で解答してください。

2年前

15

問題文

図の条件の下で、$AB^2+BC^2+CD^2+DA^2$ の値を求めてください。

解答形式

半角数字で解答してください。

正方形と2つの円

tb_lb 自動ジャッジ 難易度:
4年前

15

【補助線主体の図形問題 #015】
 今回は円がらみの求長問題にしてみました。地道なド根性解法もありますが、補助線次第では暗算も可能なように仕込んであります。お好みの解法・手法で挑戦してみてください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\def\mytri#1{\triangle \mathrm{#1}}
\def\myang#1{\angle \mathrm{#1}}
\renewcommand\deg{{}^{\circ}}
\def\myarc#1#2{\stackrel{\style{transform:matrix(#1,0,0,1.5,0,2)}{\frown}}{\mathrm{#2}}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 前半の方針をぼんやりと
  2. ヒント1の続き
  3. 後半の方針をぼんやりと
  4. ヒント3の続き
9月前

15

問題文

$1$ 以上 $12$ 以下の整数からなる集合を $U$ とし,空でない $U$ の部分集合 $S, T$ を
$$S \cup T = U,S \cap T = \phi$$となるよう定めたところ,$S$ の元の和と $T$ の元の平方和が等しくなりました.このような集合の組 $(S, T)$ すべてに対する「$S$ の元の和」の総和を解答して下さい.


たとえば,
$$S = \{1, 2, ..., 9\},T = \{10, 11, 12\}$$であるなら,$S$ の元の和は $1 + 2 + \cdots + 9 = 45$ と計算され,$T$ の元の平方和は $10^2 + 11^2 + 12^2 = 365$ と計算されます.

解答形式

半角英数にし、答えとなる正整数値を入力し解答して下さい.

Furret sequence 1

bzuL 自動ジャッジ 難易度:
18月前

15

問題文

「オ」「タ」「チ」の $3$ 種類の文字で構成される長さ $n$ の文字列に対して,オオタチ度を,その文字列の中で連続する $4$ 文字が「オオタチ」となっているようなものの数と定義します.
 たとえば「チタタオオタチオタチタオオオタチ」のオオタチ度は $2$ で,「チタオオチタオオチタオオ」のオオタチ度は $0$ です.
 長さが $n$ で構成する文字が $3$ 種類のため,文字列としては $3^n$ 種類のものが考えられます.これらのオオタチ度の相加平均を $f(n)$ とします.
 $f(n)$ が正整数になる最小の $n$ を解答してください.

解答形式

半角数字で解答してください.

[A] minimum value (easy)

okapin 自動ジャッジ 難易度:
4年前

15

問題文

原点$O$とする$xy$平面上で点$(3,2)$を通る傾き負の直線と$x$軸,$y$軸との交点をそれぞれ$A,B$とするとき、$\triangle OAB$の面積の最小値を求めよ。

解答形式

整数または既約分数で答えてください。
半角で入力してください。

2年前

15

問題文

図の条件の下で、青で示した三角形の面積 $x$ を求めてください。
※ regular hexagon:正六角形

解答形式

$x$ の値を半角数字で解答してください。

確率

Ultimate 自動ジャッジ 難易度:
14月前

15

問題文

5進数で表された[2024]を2進数で表せ。

解答形式

数字のみでOK

素数の方程式

hkd585 自動ジャッジ 難易度:
2年前

15

問題文

$2^{p+q}-p^{q}=13$を満たす素数$\left(p,q\right)$をすべて求めよ.

解答形式

$p^{2}+q^{2}$の値を,半角数字で解答してください.答えが複数ある場合は,値の小さい順に,1行に1つずつ書いてください.

(例)
解答が$\left(p,q\right)=\left(2,7\right),\left(5,11\right)$のときは,以下のように解答します.

53
146