全 4 件
感想を投稿してみましょう!この感想は正解した人だけにしか見えません!
この問題を解いた人はこんな問題も解いています
以下の問題において,1日は正確に24時間,1時間は正確に60分,1分は正確に60秒であるとする。
1太陽年(すなわち地球の公転周期)を正確に31556925秒とする。1年を365日とした暦(以下「暦」という)と太陽年を合わせるため,ある$X$年の暦において,次の条件に当てはまったときにうるう年を施す。
$X$が4で割り切れる年を366日とする。これをうるう年という。
$X$が100で割り切れる年には施されるはずだった,うるう年をキャンセルする。
$X$が400で割り切れる年はうるう年とする。
このうるう年の仕組みにより,太陽年と大きくずれることなく暦を運用できる。
ある年$Y$年において,うるう年を勘案しても暦が太陽年と1日以上のずれを起こすことが分かった。このとき,$Y$の最小値を求めよ。ただし$Y$は自然数とする。
解答は自動で判定されます。半角数字のみで答えてください。単位,カンマ区切り,0埋め,有効数字などは必要ありません。
${}$ 西暦2023年問題第5弾です。今回は三角数を取り上げてみました。ド根性ではなく、スパッと求まる解法をぜひ探してみてください。
${}$ 解答は、$n$の値をそのまま入力してください。「$n=$」の記載は不要です。 (例) $n=105$ → $\color{blue}{105}$
Oを原点とする座標平面上において、 2点A(3,-√3)、B(√3,-3)があり、点O(0,0)を中心とし半径がOBである円O上を点C が自由に動き回る。このとき、△ABCの領域が原点を含まない確率を求めよ。
分母と分子の和を半角で答えてください。
3辺がそれぞれ3,√2,√10である不等辺三角形から成る等面四面体𝑋が存在する。三角形の面積を𝑝、𝑋に内接する球体の半径を𝑞とするとき、𝑞を𝑝を用いて表せ。
𝑞=√a/b𝑝となります。 a+bを半角で答えてください
三角形$ABC$の内部に点$P$があり,$\angle ABP=42^\circ$,$\angle CBP=42^\circ$,$\angle ACP=6^\circ$,$\angle BCP=12^\circ$がそれぞれ成り立っている.このとき,$\angle BAP$の大きさを度数法で表すと,$x^\circ$となる.
$x$に当てはまる数を求めよ.
解答のみを,半角数字で答えてください.
${}$ 西暦2023年問題第4弾です。今年の西暦問題も折り返しとなりました。桁数が大きいですが、手計算で処理できるよう仕込んであります。どうぞお楽しみください。
${}$ 解答は、$N$の値をそのまま入力してください。「$N=$」の記載は不要です。 (例) $N=2323232323$ → $\color{blue}{2323232323}$
凸四角形$ABCD$の対角線$AC$上に点$E$があり,$\angle BAC=30^\circ$,$\angle ABE=110^\circ$,$\angle CBE=20^\circ$,$\angle DAC=10^\circ$,$\angle ADE=10^\circ$がそれぞれ成り立っている.このとき,$\angle CDE$の大きさを度数法で表すと,$x^\circ$となる.
※3通りの解法を用意しています.難しくはないので,いろんな方向からアプローチしてみてください.
${}$ 西暦2023年問題第3弾です。今回は数列から2023の位置を問うという、入試問題にありがちなテーマ設定にしてみました。問題文はあえて小難しく書いてますが、数列の規則性をとらえられれば十分です。軽く解いてやってください。
${}$ 解答は、$a_{n}=2023$となる$n$の値をそのまま入力してください。なお、$a_{n}=2023$となる$n$が存在しない場合には「-1」と入力してください。 (例) $a_{103}=2023$ → $\color{blue}{103}$
【補助線主体の図形問題 #007】 今回は図形問題の王道から円がらみの求角問題を用意しました。手慣れている方なら脳内で処理できるくらいの計算量です。どうぞ円と角度の世界を堪能してください。
${ \renewcommand\deg{{}^{\circ}} \def\myang#1{\angle \mathrm{#1}} \def\myarc#1#2{\stackrel{\style{transform:matrix(#1,0,0,1.5,0,2)}{\frown}}{\mathrm{#2}}} }$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。 (例) $12\deg$ → $\color{blue}{12.00}$ $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$ 入力を一意に定めるための処置です。 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
【補助線主体の図形問題 #014】 今回は面積関係を問う問題にしてみました。補助線が活躍するのはいつも通り。暗算での処理も可能です。思い思いの解法をお楽しみください。
${ \def\cm{\thinspace \mathrm{cm}} \def\mytri#1{\triangle \mathrm{#1}} }$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。 (例) $12\cm^2$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$ 入力を一意に定めるための処置です。 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
$a_1=1,na_{n+1}-2(n+2)a_n=(n+1)(n(n+2)+2^{n+1})$を満たす数列${a_n}$の一般項を求めよ。
一般項は一桁の自然数$a,b,c,d$を用いて、$a_n=(an^2+n-b)c^{n-1}-n(n+d)$と表されるので、$abcd$を解答してください。
例 $(a,b,c,d)=(1,2,3,4)$→$1234$を入力
図のように長方形や直角三角形の内接円が配置されています。青で示した角の角度を求めてください。
度数法で求め、半角数字で0以上360未満の整数を解答してください。 ※度や°などの単位は付けないでください。