三角数の和が2023の倍数

tb_lb 自動ジャッジ 難易度: 数学 > 中学数学
2023年1月5日22:16 正解数: 5 / 解答数: 5 (正答率: 100%) ギブアップ不可
整数問題 西暦問題 2023年問題

${}$ 西暦2023年問題第5弾です。今回は三角数を取り上げてみました。ド根性ではなく、スパッと求まる解法をぜひ探してみてください。

解答形式

${}$ 解答は、$n$の値をそのまま入力してください。「$n=$」の記載は不要です。
(例) $n=105$ → $\color{blue}{105}$


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています


${}$ 西暦2023年問題第3弾です。今回は数列から2023の位置を問うという、入試問題にありがちなテーマ設定にしてみました。問題文はあえて小難しく書いてますが、数列の規則性をとらえられれば十分です。軽く解いてやってください。

解答形式

${}$ 解答は、$a_{n}=2023$となる$n$の値をそのまま入力してください。なお、$a_{n}=2023$となる$n$が存在しない場合には「-1」と入力してください。
(例) $a_{103}=2023$ → $\color{blue}{103}$


${}$ 西暦2023年問題第4弾です。今年の西暦問題も折り返しとなりました。桁数が大きいですが、手計算で処理できるよう仕込んであります。どうぞお楽しみください。

解答形式

${}$ 解答は、$N$の値をそのまま入力してください。「$N=$」の記載は不要です。
(例) $N=2323232323$ → $\color{blue}{2323232323}$

雑学的数学問題集 1

LUBE 自動ジャッジ 難易度:
15月前

4

おことわり

以下の問題において,1日は正確に24時間,1時間は正確に60分,1分は正確に60秒であるとする。

問題

1太陽年(すなわち地球の公転周期)を正確に31556925秒とする。1年を365日とした暦(以下「暦」という)と太陽年を合わせるため,ある$X$年の暦において,次の条件に当てはまったときにうるう年を施す。

うるう年の決め方
  1. $X$が4で割り切れる年を366日とする。これをうるう年という。

  2. $X$が100で割り切れる年には施されるはずだった,うるう年をキャンセルする。

  3. $X$が400で割り切れる年はうるう年とする。

このうるう年の仕組みにより,太陽年と大きくずれることなく暦を運用できる。

ある年$Y$年において,うるう年を勘案しても暦が太陽年と1日以上のずれを起こすことが分かった。このとき,$Y$の最小値を求めよ。ただし$Y$は自然数とする。

解答形式

解答は自動で判定されます。半角数字のみで答えてください。単位,カンマ区切り,0埋め,有効数字などは必要ありません。

◎ よい例
  • 2023
  • 1
  • 1000000000000
▲ わるい例
  • 2023年(単位)
  • 2,023(カンマ区切り)
  • 0002(0埋め)
  • 1.0×10^5(有効数字)

数の大小

PonPon 自動ジャッジ 難易度:
2年前

4

問題

以下の問に関して, $2.71<e<2.72$ , $3.14<π<3.15$ とする.

(1) $a≠0$ のとき $a+1$ , $e^a$ の大小を比較せよ.

(2) $α>0$ かつ $β>0$ かつ $α≠β$ のとき,
$\hspace{11pt} $ $α-β$ , $β(logα-logβ)$ の大小を比較せよ.

(3) $e^π$ , $π^e$ の大小を比較せよ.

(4) $e^{e^e},e^{e^π},e^{π^e},e^{π^π},π^{e^e},π^{e^π},π^{π^e},π^{π^π} $ の大小を比較せよ.
$\hspace{11pt} $ここで, $a^{b^c}$は $a^{(b^c)} $を表す.

解答形式

(1) ① $a+1$ ② $e^a$
(2) ① $α-β$ $\:$② $β(logα-logβ)$
(3) ① $e^π$ ② $π^e$
(4) ①$e^{e^e}$②$e^{e^π}$③$e^{π^e}$④$e^{π^π}$⑤$π^{e^e}$⑥$π^{e^π}$⑦$π^{π^e}$⑧$π^{π^π} $
として問ごとに改行し,小さい順に左から半角数字を用いて並べよ.
(例)12345678

内接球の半径

ryno 自動ジャッジ 難易度:
2年前

4

問題文

3辺がそれぞれ3,√2,√10である不等辺三角形から成る等面四面体𝑋が存在する。三角形の面積を𝑝、𝑋に内接する球体の半径を𝑞とするとき、𝑞を𝑝を用いて表せ。

解答形式

𝑞=√a/b𝑝となります。
a+bを半角で答えてください

座標平面上の確率

ryno 自動ジャッジ 難易度:
2年前

5

問題文

Oを原点とする座標平面上において、
2点A(3,-√3)、B(√3,-3)があり、点O(0,0)を中心とし半径がOBである円O上を点C が自由に動き回る。このとき、△ABCの領域が原点を含まない確率を求めよ。

解答形式

分母と分子の和を半角で答えてください。

整角問題

hkd585 自動ジャッジ 難易度:
2年前

5

問題文

三角形$ABC$の内部に点$P$があり,$\angle ABP=42^\circ$,$\angle CBP=42^\circ$,$\angle ACP=6^\circ$,$\angle BCP=12^\circ$がそれぞれ成り立っている.このとき,$\angle BAP$の大きさを度数法で表すと,$x^\circ$となる.

$x$に当てはまる数を求めよ.

解答形式

解答のみを,半角数字で答えてください.

整角問題2

hkd585 自動ジャッジ 難易度:
2年前

22

問題文

凸四角形$ABCD$の対角線$AC$上に点$E$があり,$\angle BAC=30^\circ$,$\angle ABE=110^\circ$,$\angle CBE=20^\circ$,$\angle DAC=10^\circ$,$\angle ADE=10^\circ$がそれぞれ成り立っている.このとき,$\angle CDE$の大きさを度数法で表すと,$x^\circ$となる.

$x$に当てはまる数を求めよ.

※3通りの解法を用意しています.難しくはないので,いろんな方向からアプローチしてみてください.

解答形式

解答のみを,半角数字で答えてください.


次の式を因数分解しなさい

$2(x-y)^2-xy(x^2+2xy+y^2-3)+(2x+2y)^2-(x+y)^2+xy[(x+y)(x-y)+2y(x+y)+5]$

解答形式

半角で解答のみを記入すること

降べきの順で記入すこと

同じ項の中にx,yが同時にある場合、xを先に記入すること

指数の表記は ^n の形で解答すること

括弧の外にある係数は左側に記入すること

括弧内の項は、文字 数 の順に記入すること

3年前

14

【補助線主体の図形問題 #007】
 今回は図形問題の王道から円がらみの求角問題を用意しました。手慣れている方なら脳内で処理できるくらいの計算量です。どうぞ円と角度の世界を堪能してください。

解答形式

${
\renewcommand\deg{{}^{\circ}}
\def\myang#1{\angle \mathrm{#1}}
\def\myarc#1#2{\stackrel{\style{transform:matrix(#1,0,0,1.5,0,2)}{\frown}}{\mathrm{#2}}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 全体方針をぼんやりと
  2. ある定理の紹介
  3. ヒント1・2の内容をやや具体的に

漸化式

zyogamaya 自動ジャッジ 難易度:
3年前

5

問題文

$a_1=1,na_{n+1}-2(n+2)a_n=(n+1)(n(n+2)+2^{n+1})$を満たす数列${a_n}$の一般項を求めよ。

解答形式

一般項は一桁の自然数$a,b,c,d$を用いて、$a_n=(an^2+n-b)c^{n-1}-n(n+d)$と表されるので、$abcd$を解答してください。


$(a,b,c,d)=(1,2,3,4)$→$1234$を入力


問題文

$\bar{p},\bar{q}$はそれぞれ$p,q$の補集合である

「$\bar{p}$は$q$であるための必要条件」であることは、
「$p$は$\bar{q}$であるための必要十分条件」であるための

1.必要十分条件である
2.必要条件であるが十分条件ではない
3.十分条件であるが必要条件ではない
4.必要条件でも十分条件でもない

解答形式

番号で入力してください。