実数 $x,y$ が $x^2+y^2 = 1$ を満たしています. このとき, $\cfrac{7xy-5x-5y+22}{x^2-10x+25}$ のとり得る最大値を $M$, 最小値を $N$ としたときの $NM$ の値を求めてください. ただし, 答えは互いに素な正整数 $a,b$ を用いて $\cfrac{b}{a}$ と表されるので, $a+b$ の値を解答して下さい.
非負整数値を解答して下さい.
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
以下の値を求めてください。 $$ \sum_{1\leqq m<n\leqq 9} \biggl(\cos\dfrac{m\pi}{10}+\cos\dfrac{n\pi}{10}+1\biggr)^3 $$
答えは正整数になるので、それを半角数字で解答してください。
任意の二次関数$\ f\ $についてある$\ \theta \ (0\le \theta \le 2\pi)$があって,$\ xy$座標平面上で$\ y=f(x)\ $を$\ \theta \ $反時計回りに回転させたものを考える.$\ $これがある関数$\ g(x)\ $で$\ y=g(x)\ $と表せるときの$\ \theta\ $としてありうるものの総和を$\ S\ $とするとき$\ S\ $を超えない最大の整数を回答して下さい.
整数で回答してください.
直方体 $ABCD-EFGH$があり, $AB=\sqrt{2},AD=2023\sqrt{2},AE=2024\sqrt{2}$ です. 三角形 $BDE$ の面積を求めてください.
正整数 $m$ に対して, $m$ の正の約数全ての相加平均を $f(m)$ とします.このとき以下を満たす $m$ の総和を求めてください. $$f(m)=\frac{m}{2}$$
${}$ 西暦2024年問題第6弾です。いよいよ整数問題のお出ましとなりました。ある程度は手を動かす必要がありますが、あることに気づけば調べる候補をぐっと減らすことができます。約数の個数を求めるのが面倒な方はWolfram|Alpha https://www.wolframalpha.com なども併用して構いません。
${}$ 解答は求める$n$の最小値をそのまま入力してください。 (例)$n=2106$ → $\color{blue}{2106}$
$$\angle{ADB}=\angle{ADC}=\angle{CDB}=90^°$$なる四面体 $ABCD$ の外接球に関して、体積を $V$ 表面積を $S$ としたとき、非負整数 $p$ を用いて、$V=p\pi,S=p\pi$ が成り立ちました。 このとき、四面体 $ABCD$ の体積の最大値の2乗を求めてください。
半角数字で入力して下さい。
$0,a,b,c$ は相異なる実数で,$a^3b+b^3c+c^3a=ab^3+bc^3+ca^3$ を満たすとき,次の値を求めよ.$$\min_{a,b,c}\dfrac{(a^3+b^3+c^3)(a^4+b^4+c^4+50)}{a^5+b^5+c^5}$$
半角数字で入力してください.
$\angle{A} = 60^{\circ}$ なる三角形 $ABC$ の内心を $I$,外心を $O$ とする.直線 $IO$ と直線 $BC$ の交点を $D$ とし,直線 $AD$ と三角形 $ABC$ の外接円との交点を $E(\not = A)$ とすると,以下が成立した:
$$EI = 23 , IO = 18$$
このとき,線分 $AI$ の長さは,互いに素な正整数 $a,b$ を用いて$\displaystyle\frac{a}{b}$ と表されるので,$a + b$ を解答してください.
【補助線主体の図形問題 #117】 今週の図形問題です。少しずつ発見を積み重ねていく、やや重めの問題となっています。どうぞじっくりと取り組んでやってください。
${}$ 投稿時点から翌日10月2日(月)午前1時過ぎまで、$\mathrm{AB} > \mathrm{AC}$となるべきところが$\mathrm{AB} > \mathrm{BC}$となっていました。お詫びして訂正いたします。現在は修正済みの画像となっています。
${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。 (例) $12\cm^2$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$ 入力を一意に定めるための処置です。 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
正方形と正三角形を組み合わせた以下の図において、青で示した角の大きさを求めてください。
半角数字で解答してください。 解答は度数法で、単位を付けずに0以上180未満の整数として解答してください。
関数 $f(x)=\sqrt[3]{-(x+4)(2x+3)(3x-8)}\ \left(\displaystyle -\frac{3}{2} \leq x \leq \frac{8}{3}\right)$ の最大値を求めよ。
半角数字またはTeXを入力してください。
$a,b,c$がいずれも正の実数であり、$a+b+c=5,abc=1$が成り立つとき、$ab+bc+ca$の最小値を求めよ。
答えは既約分数になります。/を用いて入力してください。 例:$\displaystyle\frac{5}{7}$→5/7