OMC没問1

natsuneko 自動ジャッジ 難易度: 数学 > 高校数学
2023年10月30日14:07 正解数: 8 / 解答数: 11 (正答率: 72.7%) ギブアップ数: 6
代数

問題文

実数 $x,y$ が $x^2+y^2 = 1$ を満たしています. このとき, $\cfrac{7xy-5x-5y+22}{x^2-10x+25}$ のとり得る最大値を $M$, 最小値を $N$ としたときの $NM$ の値を求めてください. ただし, 答えは互いに素な正整数 $a,b$ を用いて $\cfrac{b}{a}$ と表されるので, $a+b$ の値を解答して下さい.

解答形式

非負整数値を解答して下さい.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

cosを含む総和

J_Koizumi_144 自動ジャッジ 難易度:
17月前

9

問題文

以下の値を求めてください。
$$
\sum_{1\leqq m<n\leqq 9} \biggl(\cos\dfrac{m\pi}{10}+\cos\dfrac{n\pi}{10}+1\biggr)^3
$$

解答形式

答えは正整数になるので、それを半角数字で解答してください。

初投稿

Butterflv 自動ジャッジ 難易度:
18月前

23

問題文

任意の二次関数$\ f\ $についてある$\ \theta \ (0\le \theta \le 2\pi)$があって,$\ xy$座標平面上で$\ y=f(x)\ $を$\ \theta \ $反時計回りに回転させたものを考える.$\ $これがある関数$\ g(x)\ $で$\ y=g(x)\ $と表せるときの$\ \theta\ $としてありうるものの総和を$\ S\ $とするとき$\ S\ $を超えない最大の整数を回答して下さい.

解答形式

整数で回答してください.

BMC002-E

MARTH 自動ジャッジ 難易度:
18月前

12

直方体 $ABCD-EFGH$があり, $AB=\sqrt{2},AD=2023\sqrt{2},AE=2024\sqrt{2}$ です. 三角形 $BDE$ の面積を求めてください.

SMC100-25

MARTH 自動ジャッジ 難易度:
18月前

20

正整数 $m$ に対して, $m$ の正の約数全ての相加平均を $f(m)$ とします.このとき以下を満たす $m$ の総和を求めてください.
$$f(m)=\frac{m}{2}$$


${}$ 西暦2024年問題第6弾です。いよいよ整数問題のお出ましとなりました。ある程度は手を動かす必要がありますが、あることに気づけば調べる候補をぐっと減らすことができます。約数の個数を求めるのが面倒な方はWolfram|Alpha https://www.wolframalpha.com なども併用して構いません。

解答形式

${}$ 解答は求める$n$の最小値をそのまま入力してください。
(例)$n=2106$ → $\color{blue}{2106}$

OMC没問2

natsuneko 自動ジャッジ 難易度:
18月前

9

問題文

正整数 $n$ に対して, $n^i \equiv 1 \ (\textrm{mod} \ 25 )$ を満たす最小の正整数 $i$ を $f(n)$ とします. (ただし, このような $i$ が存在しない場合は, $f(n) = 0$ とします.) このとき, $1 \leq n \leq 10000$ の範囲で $f(n)$ が最大値をとるような $n$ の総積を $1000$ で割った余りを解答して下さい.

解答形式

非負整数値を解答して下さい.

16月前

5

問題文

円に内接する $8$ 角形 $ABCDEFGH$ が $\angle{A}=121^{\circ},\angle{B}=122^{\circ},\angle{C}=123^{\circ},\angle{D}=124^{\circ},\angle{E}=125^{\circ},\angle{F}=126^{\circ}$ を満たすとき,$\angle{G}$ の大きさを度数法で解答してください.

解答形式

半角数字で解答してください.

除夜コン2023予選C3

shoko_math 自動ジャッジ 難易度:
16月前

6

問題文

$5\times5$ のマス目の異なる $2$ つのマスにナイトの駒を $1$ つずつ置き,「ナイトの駒の動きに従って $2$ つの駒を同時に動かす」という操作を繰り返したところ,$2$ つの駒が同じマスに止まりました.
このとき,最初にナイトの駒を置いた $2$ マスの組み合わせとしてあり得るものの総数を求めてください.

解答形式

半角数字で解答してください.

過去垢の問題(整数➀)

katsuo_temple 自動ジャッジ 難易度:
6月前

7

問題文

以下の式を満たす素数の組$(a,b,c,d)$について、$abcd$の総和を求めよ。
$$
4a²+b²+c²=d²
$$

解答形式

半角数字で解答してください。

対角線の本数

noname 自動ジャッジ 難易度:
13月前

26

問題文

正$n$角形の対角線の本数が素数になるような自然数$n$を全て求めてください。

解答形式

$n$としてあり得る数を半角で小さい順に1列に1つずつ縦に解答してください。
例:2,3と答えたい時
2
3
と解答してください。

自作問題1

mahiro 自動ジャッジ 難易度:
18月前

15

問題文

$$\angle{ADB}=\angle{ADC}=\angle{CDB}=90^°$$なる四面体 $ABCD$ の外接球に関して、体積を $V$ 表面積を $S$ としたとき、非負整数 $p$ を用いて、$V=p\pi,S=p\pi$ が成り立ちました。
このとき、四面体 $ABCD$ の体積の最大値の2乗を求めてください。

解答形式

半角数字で入力して下さい。

N3

orangekid 自動ジャッジ 難易度:
11月前

14

問題文

整数$x, y, z$は$0<x<28,0<y, 0\leq z<20$ と $37x-13y=2z$ を共に満たします。このような整数の組$(x,y,z)$はいくつあるでしょう?

解答形式

半角数字で入力してください。