OMC不採用問題を供養1 by shakayami

shakayami 自動ジャッジ 難易度: 数学 > 高校数学
2024年1月25日20:55 正解数: 6 / 解答数: 6 (正答率: 100%) ギブアップ数: 0

全 6 件

回答日時 問題 解答者 結果
2024年2月5日22:10 OMC不採用問題を供養1 by shakayami nmoon
正解
2024年1月31日18:01 OMC不採用問題を供養1 by shakayami naoperc
正解
2024年1月28日12:19 OMC不採用問題を供養1 by shakayami MARTH
正解
2024年1月25日23:54 OMC不採用問題を供養1 by shakayami Prime-Quest
正解
2024年1月25日21:16 OMC不採用問題を供養1 by shakayami bzuL
正解
2024年1月25日21:09 OMC不採用問題を供養1 by shakayami natsuneko
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

10次方程式

noname 自動ジャッジ 難易度:
15月前

9

一部問題文を変更しました。ご迷惑をおかけしてしまい申し訳ございません。

$a,b$を実数の定数とする。$x$についての方程式
$x^{10}+x^8+(1-2b)x^{6}-6x^4-2ax^3+b^2x^2+a^2+9=0$
の実数解を全て求めよ。また、その時の$a,b$の値を求めよ。

解答形式

(x,a,b)=(1,1,1),(2,3,4)...という感じで半角で入力してください。(順不同)
±は使わないでください。
底ができるだけ小さくなるようにしてください。
また、m/n乗はa^(m/n)というふうに解答してください。例:3^(2/3),5^(7/8)など

商と余り

miq_39 自動ジャッジ 難易度:
18月前

10

問題文

自然数 $n$ に対し,次のように定められた数列 $\{a_{n}\},\{b_{n}\},\{c_{n}\}$ がある:

  • $a_{1}=2023^{2023}$
  • $a_{n}$ を $120$ で割った商が $b_{n}$,余りが $c_{n}$
  • $a_{n+1}=b_{n}+c_{n}$

このとき,$\lim_{n\to\infty}a_{n}$ を求めよ.

解答形式

半角数字で解答してください.

QMT001(自作問題1問目)

shoko_math 自動ジャッジ 難易度:
15月前

12

問題文

$4\times4$ のマス目の各マスに $3,2,6$ のいずれかを書き込む方法のうち,どの横の行に書かれた $4$ 数の積も立方数であり,どの縦の列に書かれた $4$ 数の積も立方数であるような書き込み方は何通りあるかを求めてください.
ただし,回転や裏返しにより一致する書き込み方も異なるものとして数えるものとします.また,$3,2,6$ のうち使わない数があっても構いません.

解答形式

半角数字で解答してください.

座王001(サドンデス6)

shoko_math 自動ジャッジ 難易度:
15月前

24

問題文

$S=\{1,2,3,4,5,6\}$ とします.$S$ の相異なる部分集合 $A,B,C$ の組であって,$A\subset B\subset C$ を満たすものの個数を求めてください.
(ただし,$A,B,C$ は空集合や $S$ に一致してもよいものとします.)

解答形式

半角数字で解答してください.

多項式の割り算

sha256 自動ジャッジ 難易度:
15月前

10

問題文

$n,m \ (m\geq n)$を正整数の定数とし、多項式$f(x)$を$f(x)=x^m$で定めます。
$f(x)$を$(x-2)^n$で割った商$Q(x)$について、$Q(2)=40$が成立しました。

$(n,m)$の組としてあり得るもの全てについて、$nm$の総和を求めてください。

解答形式

正整数値を半角で入力してください。

自作問題3

iwashi 自動ジャッジ 難易度:
13月前

11

問題文

任意の自然数$m,n$に対し、$A(m,n)$は
$$
A(1,n) = n, \quad A(m+1,n) = \sum_{k=1}^{n}A(m,k)
$$を満たす。このとき、$A(x,y)=2024$を満たす自然数$x,y$の組$(x,y)$を求めよ。

解答形式

$x+y$の総和を半角で解答してください。

15月前

8

【補助線主体の図形問題 #126】
 今週の図形問題です。隙あらば暗算で処理できる程度の問題を好んで出題しているのですが、今回は暗算処理は厳しいかもしれません。紙&ペンをご用意の上、挑戦していただければと思います。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

円と3本の線分

tb_lb 自動ジャッジ 難易度:
24月前

12

【補助線主体の図形問題 #102】
 今週の図形問題です。ある素朴な性質を元に作問しました。手慣れた方は暗算で行けるかもしれません。それぞれお好きなようにお楽しみください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

17月前

10

${}$ 西暦2024年問題第4弾です。今回は連分数を素材にしてみました。一風変わった解き心地の問題をお楽しみください。

解答形式

${}$ 解答は有理数$a$と$b$の値を2行に分けて入力してください。値が整数のときにはそのまま整数表現で、非整数のときには既約分数○/△の形で入力することにします。「$a=$」「《1行目》」などの入力は必要ありません。
(例)$a=2024$、$b=\dfrac{1}{4}$ → 《1行目》$\color{blue}{2024}$、《2行目》$\color{blue}{1/4}$

正方形の中の八角形の面積

Fuji495616 自動ジャッジ 難易度:
16月前

9

問題文

四角形ABCDは正方形で、点E,F,G,Hは辺の中点です。四角形ABCDの面積が54㎠のとき、青い部分の面積は何㎠ですか。

解答形式

半角数字で入力してください。
例)10

SMC100-94

MARTH 自動ジャッジ 難易度:
19月前

8

$100\times 100$ のマス目があります. 上から $i$ 行目, 左から $j$ 列目のマスを $100(i-1)+j$ と呼ぶことにします. SMC 君は一般的な $6$ 面サイコロを $10000$ 回振り, $i$ 回目に振って出た目をマス $i$ に書き込みます. このとき, 以下の条件を満たす確率を $p$ とするとき, $6^{10000}p$ は整数になるので, 素数 $3299$ で割った余りを求めてください.

  • 任意の行について, その行のマスに書かれた整数の総和は偶数.
  • 任意の列について, その列のマスに書かれた整数の総和は $3$ の倍数.

三角形の面積の和

Fuji495616 自動ジャッジ 難易度:
13月前

4

問題文

$∠$A=69°、$∠ $B=66°、$∠ $C=45°である三角形ABCがあります。辺AC上にAB=DBとなる点Dをとり、辺BC上にAB=AEとなる点Eをとりました。DBとEAの交点をFとします。三角形AFBの周りの長さが12cmの時、三角形ABCの面積の2倍と三角形ABFの面積の和は何cm$^2$ですか。

解答形式

半角数字で入力してください。
例)10