求面積問題3

Kinmokusei 自動ジャッジ 難易度: 数学 > 高校数学
2020年7月7日18:22 正解数: 12 / 解答数: 13 (正答率: 92.3%) ギブアップ不可

全 13 件

回答日時 問題 解答者 結果
2025年11月29日20:55 求面積問題3 Anyway_Retired
正解
2024年3月7日15:39 求面積問題3 Prime-Quest
正解
2023年12月28日2:37 求面積問題3 natsuneko
正解
2023年12月4日21:29 求面積問題3 nmoon
正解
2023年11月21日17:47 求面積問題3 naoperc
正解
2022年11月18日10:43 求面積問題3 ゲスト
正解
2020年8月5日10:36 求面積問題3 shakayami
正解
2020年7月21日12:44 求面積問題3 green+
正解
2020年7月19日2:14 求面積問題3 mochimochi
正解
2020年7月8日16:24 求面積問題3 okapin
正解
2020年7月8日4:50 求面積問題3 baba
正解
2020年7月8日4:42 求面積問題3 baba
不正解
2020年7月8日2:12 求面積問題3 sapphire15
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

求面積問題5

Kinmokusei 自動ジャッジ 難易度:
5年前

10

問題文

正方形が2つ、図のように配置されています。赤い線分の長さが20のとき、緑で示した四角形の面積を求めてください。
ただし、図中の青点はそれぞれの正方形の対角線の交点です。

解答形式

半角数字で解答してください。

求面積問題8

Kinmokusei 自動ジャッジ 難易度:
5年前

17

問題文

△ABCと点Pをとり、△ABP, △BCP, △CAPの重心をそれぞれ$G_1, G_2, G_3$とします。青で示した3つの三角形の面積の和が10のとき、$△G_1G_2G_3$(赤い三角形)の面積を求めてください。

解答形式

半角数字で解答してください。

求面積問題7

Kinmokusei 自動ジャッジ 難易度:
5年前

20

問題文

三角形の外側に3つの正方形を図のように作りました。橙・緑・紫の線分の長さを3辺の長さとする三角形(赤い三角形)の面積が57のとき、元の三角形(青い三角形)の面積を求めてください。

解答形式

半角数字で解答してください。

求面積問題6

Kinmokusei 自動ジャッジ 難易度:
5年前

12

問題文

図中、同じ印のついている辺・角同士は等しいです。
緑の凹四角形の面積が10のとき、青の三角形の面積を求めてください。

解答形式

半角数字で解答してください。

求長問題2

Kinmokusei 自動ジャッジ 難易度:
5年前

12

問題文

直径10の半円中に、直径の和が10となる2つの半円を図のように配置します。点Aを大半円の弧上にとり、線分AB,ACと小半円の交点をD,Eとします。
$BD^2+DE^2+EC^2$が最小となるようにしたとき、その最小値を求めてください。

解答形式

半角数字で解答してください。

最大・最小問題

zyogamaya 自動ジャッジ 難易度:
5年前

21

問題文

$a,b,c$がいずれも正の実数であり、$a+b+c=5,abc=1$が成り立つとき、$ab+bc+ca$の最小値を求めよ。

解答形式

答えは既約分数になります。/を用いて入力してください。
例:$\displaystyle\frac{5}{7}$→5/7

[A] よくある級数

ofukufukufuku 自動ジャッジ 難易度:
5年前

14

問題文

$y=\tan x \; \left(-\cfrac{\pi}{2}<x<\cfrac{\pi}{2}\right)$ の逆関数を $x=f(y)$ とする.このとき,
$$
S=\sum_{n=0}^\infty f\left(\frac{1}{n^2+n+1}\right)
$$を求めよ.答えは,整数ア・イを用いて
$$
S=\frac{\fbox{ア}}{\fbox{イ}}\pi
$$と既約分数の形でかける.

解答形式

アとイをそれぞれ1行目、2行目に半角数字で入力せよ.

求面積問題2

Kinmokusei 自動ジャッジ 難易度:
5年前

13

問題文

緑色の線分の長さは1です。
このとき、円の面積を求めてください。
図中の赤点はそれを含む線分の中点です。

解答形式

答えは(分数)×πの形になります。
分子を1行目に、分母を2行目に半角数字で入力してください。
ただし、既約分数の形で解答してください。
例: (10/3)π → 1行目に10、2行目に3

求面積問題4

Kinmokusei 自動ジャッジ 難易度:
5年前

8

問題文

半径比が1:2の同心円と直角三角形です。
赤い線分の長さが12のとき、緑の三角形の面積を求めてください。

解答形式

半角数字で解答してください。

求面積問題9

Kinmokusei 自動ジャッジ 難易度:
5年前

9

問題文

問題文を3つの半円が図のように配置されています。赤い部分の面積が9、緑の部分の面積が5のとき、青い部分の面積を求めてください。

解答形式

半角数字で解答してください。

求角問題4

Kinmokusei 自動ジャッジ 難易度:
5年前

8

問題文

正六角形2つが図のように配置されています。赤い線分と青い線分の長さの比が1:4であるとき、緑で示した角Yの角度を求めてください。
ただし、図中"center"で示した点は正六角形の外心です。

解答形式

0~360までの半角数字で、「°」や「度」をつけずに解答してください。

求長問題3

Kinmokusei 自動ジャッジ 難易度:
5年前

9

問題文

2つの正六角形が図のように配置されています。
赤い線分の長さが10のとき、青い線分の長さを求めてください。
ただし、図中"center"で示した点は各正六角形の外心です。

解答形式

半角数字で解答してください。