経路の場合の数

EIKAKUHANSU_1227 自動ジャッジ 難易度: 数学 > 高校数学
2024年11月22日7:55 正解数: 15 / 解答数: 26 (正答率: 57.7%) ギブアップ数: 0
#高校数学 #場合の数 #競技数学 #大学入試 #自作問題

全 26 件

回答日時 問題 解答者 結果
2025年10月26日17:05 経路の場合の数 ゲスト
正解
2025年10月26日17:02 経路の場合の数 ゲスト
不正解
2025年10月11日21:24 経路の場合の数 ゲスト
不正解
2025年10月8日1:11 経路の場合の数 ゲスト
正解
2025年7月11日12:26 経路の場合の数 ゲスト
正解
2025年5月13日19:27 経路の場合の数 Weskdohn
正解
2025年3月30日6:14 経路の場合の数 shukurimu_Az
正解
2025年3月30日6:12 経路の場合の数 ゲスト
正解
2025年3月13日4:28 経路の場合の数 MACHICO
正解
2025年3月13日4:01 経路の場合の数 Pon
不正解
2025年3月13日3:56 経路の場合の数 ゲスト
正解
2025年3月13日3:55 経路の場合の数 Pon
不正解
2025年3月13日3:52 経路の場合の数 ゲスト
正解
2025年2月6日0:57 経路の場合の数 ゲスト
不正解
2025年2月6日0:55 経路の場合の数 ゲスト
不正解
2025年2月5日22:34 経路の場合の数 ゲスト
正解
2025年2月5日21:32 経路の場合の数 ゲスト
不正解
2025年2月5日21:29 経路の場合の数 k_sub
正解
2024年12月16日17:50 経路の場合の数 ゲスト
不正解
2024年12月16日17:49 経路の場合の数 ゲスト
不正解
2024年12月1日20:48 経路の場合の数 0__citrus
正解
2024年12月1日20:47 経路の場合の数 0__citrus
不正解
2024年11月23日23:10 経路の場合の数 ゲスト
正解
2024年11月23日23:06 経路の場合の数 ゲスト
不正解
2024年11月22日19:41 経路の場合の数 natsuneko
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

No.05 連立方程式と不等式

Prime-Quest 自動ジャッジ 難易度:
21月前

6

問題

次の実数 $a,b,c$ に対し,つねに $|ax+by|\leqq |c|$ となる実数 $x,y$ の和の値域幅を求めよ.

  • $p,q$ の連立方程式 $ap+bq=c,\ (b-c)p+(c+a)q=a+7b$ は解を複数個もつ.

解答形式

半角数字で入力してください.

有理化問題

noname 自動ジャッジ 難易度:
20月前

18

$\frac{1}{\sqrt{1}+\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{5}+\sqrt{6}+\sqrt{8}+\sqrt{10}}$
を有理化し、その分母を答えよ。

解答が間違っていたため修正いたしました。ご迷惑をおかけしてしまい申し訳ございません。

解答形式

既約分数にしてその分母を整数値でお答えください。

余りの計算

noname 採点者ジャッジ 難易度:
20月前

9

$1^{2024}+2^{2024}+3^{2024}+4^{2024}+5^{2024}+…+2023^{2024}+2024^{2024}$を$17$で割った余りを求めよ。

元の問題を書き換えて別の問題にしました。前の問題は解いていただけなかったので別の問題に変えました。

解答形式

余りを自然数でお答えください

幾何問題11/22

miq_39 自動ジャッジ 難易度:
23月前

10

問題文

円 $\omega$ 上に相異なる $2$ 点 $A,B$ がある.ただし,弦 $AB$ は $\omega$ の直径ではない.$A,B$ における $\omega$ の接線をそれぞれ $l,m$ とする.劣弧 $AB$ 上(端点を除く)に点 $P$ をとり,$P$ を通り $l$ に平行な直線と $\omega$ の交点であって,$P$ でないものを $C$ とし,$P$ を通り $m$ に平行な直線と $\omega$ の交点であって,$P$ でないものを $D$ とする.$l$ と直線 $BC$ の交点を $E$,$m$ と線分 $AD$ の交点を $F$ とする.また,線分 $AF$ と線分 $BE$ の交点を $X$,線分 $CF$ と線分 $DE$ の交点を $Y$ とする.$AB=\sqrt{69}$,$AC=3$,$BD=6$ がそれぞれ成り立っているとき,線分 $XY$ の長さは,互いに素な正整数 $a,c$ および平方因子を持たない $2$ 以上の整数 $b$ を用いて $\dfrac{a\sqrt{b}}{c}$ と表されるので,$a+b+c$ の値を求めよ.

解答形式

半角数字で解答してください.

自作問題A1

imabc 自動ジャッジ 難易度:
19月前

11

問題文

正の実数 $x,y,z$ が $xyz=x+y+z+2$ を満たしています.このとき, $x+4y+9z$ の最小値を求めてください.

解答形式

答えを入力してください.

座王001(C2)

shoko_math 自動ジャッジ 難易度:
19月前

9

問題文

$4\times9$ のマス目があり,$1$ つのマスの一辺の長さは $1$ とします.最も左下の点 $A$ から出発して,「線に沿って長さ $1$ だけ右または上または左に進む」という操作を繰り返して最も右上の点 $B$ にたどり着く経路のうち同じ線分を $2$ 回以上通過しないもの全てに対し,経路の長さの総和を求めてください.

解答形式

半角数字で解答してください.

17月前

6

問題文

下の図において, $\triangle ABC$ と $\triangle BDE$ は二等辺三角形です. さらに,
$$\angle ABC=\angle BDE=90^\circ,\hspace{1pc} \angle EBC=60^\circ\\
BC=32, \hspace{1pc} DB=6\sqrt{2}$$ が成立します. 線分 $AE$ の中点を $M$ とするとき, 線分 $DM$ の長さを求めてください.
ただし, $E$ は $\triangle ABC$ の内側にあります.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

座王001(ボツ問題)

shoko_math 自動ジャッジ 難易度:
19月前

14

問題文

$\dfrac{1}{2},\dfrac{2}{3},\dfrac{3}{5},\dfrac{5}{8},\dfrac{8}{13},\dfrac{13}{21},\dfrac{21}{34},\dfrac{34}{55},\dfrac{55}{89}$ の中から( $2$ 個以上の)偶数個の異なる分数を選ぶ方法 $2^{8}-1$ 通りに対し,選んだ数の積を考えるとき,それらの総和は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

OMC不採用問題改題

bzuL 自動ジャッジ 難易度:
22月前

30

問題文

$14^3$ の $16$ 個の正の約数を並び替えた数列を $a_1,\ldots,a_{16}$ とおき,$15^3$ の $16$ 個の正の約数を並び替えた数列を$b_1,\ldots,b_{16}$ とおきます.この二つの数列のスコア
$$
\sum_{k=1}^{16} \frac{a_k}{b_k}
$$
で定めます.数列 $a,b$ の組として考えられるものは $(16!)^2$ 通りありますが,これらの組におけるスコアの(相加)平均を求めてください.ただし,求める値は互いに素な正整数 $p,q$ を用いて,$\dfrac{p}{q}$ と表されるため,$p+q$ を解答してください.

解答形式

半角数字で解答してください.

13月前

15

問題文

$1$ 以上 $12$ 以下の整数からなる集合を $U$ とし,空でない $U$ の部分集合 $S, T$ を
$$S \cup T = U,S \cap T = \phi$$となるよう定めたところ,$S$ の元の和と $T$ の元の平方和が等しくなりました.このような集合の組 $(S, T)$ すべてに対する「$S$ の元の和」の総和を解答して下さい.


たとえば,
$$S = \{1, 2, ..., 9\},T = \{10, 11, 12\}$$であるなら,$S$ の元の和は $1 + 2 + \cdots + 9 = 45$ と計算され,$T$ の元の平方和は $10^2 + 11^2 + 12^2 = 365$ と計算されます.

解答形式

半角英数にし、答えとなる正整数値を入力し解答して下さい.

整数の剰余

mahiro 自動ジャッジ 難易度:
6月前

15

問題文

以下によって定義される整数 $N$ を素数 $13907$ で割った余りを求めてください.$$N=\prod_{k=1}^{13906} (k^2+2025)$$

解答形式

13906以下の非負整数で解答してください


問題文

一辺の長さが1である正方形を $n$ 個、頂点が合うように辺同士でつなげてできる図形を $n$-オミノ とする。ただし、$n=1$ の場合は1つの正方形である。また、$n$-オミノが多角形をなすとき($n$-オミノで囲まれた領域が存在しないとき)、これを $n$-オミノ多角形 とする。

$\rm{S_n}$が$n$-オミノ多角形であるとき、$\rm{S_n}$の辺の数が2024となるような $n$ の最小値を求めよ。

解答形式

答えは整数となるので、半角で入力してください。