2と5だけからなる2025の倍数

tb_lb 自動ジャッジ 難易度: 数学 > 中学数学
2025年1月5日20:19 正解数: 4 / 解答数: 5 (正答率: 80%) ギブアップ不可
整数問題 西暦問題 2025年問題

全 5 件

回答日時 問題 解答者 結果
2025年2月13日19:45 2と5だけからなる2025の倍数 natsuneko
正解
2025年1月8日14:31 2と5だけからなる2025の倍数 Furina
正解
2025年1月7日16:29 2と5だけからなる2025の倍数 tima_C
正解
2025年1月6日8:41 2と5だけからなる2025の倍数 ゲスト
正解
2025年1月6日8:39 2と5だけからなる2025の倍数 ゲスト
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

自作問題1

iwashi 自動ジャッジ 難易度:
13月前

2

問題文

$n$を自然数とする。$\displaystyle \sum_{k=1}^{n} n^k$を$8$で割った余りを$a_{n}$、 $\displaystyle S_{n}=\sum_{k=1}^{n}a_{k}$とする。すべての$n$に対して$a_{n+l}=a_{n}$が成り立つような自然数$l$の最小値と$S_{m+2025}=2S_{m}$が成り立つような自然数$m$の最大値を求めよ。

解答形式

1行目に$l$を,2行目に$m$を半角英数字で解答してください。例えば$l=123,m=456$とする場合

123
456

としてください。

OMC没問7

natsuneko 自動ジャッジ 難易度:
38日前

2

問題文

$\sin \angle BAC = \dfrac{7}{8}$ を満たす鋭角三角形 $ABC$ について,$B$ から $AC$ に下ろした垂線の足を $D$,$C$ から $AB$ に下ろした垂線の足を $E$ とします.また,線分 $BC$ 上に点 $F$ を $\angle DEF = 90^\circ$ を満たすように取ったところ $BF=2, CF=6$ が成立しました.このとき,三角形 $ABC$ の面積の二乗を求めてください.ただし,答えは互いに素な正整数 $a,b$ を用いて $\dfrac{b}{a}$ と表されるので,$a+b$ の値を解答してください.

解答形式

半角整数値で解答してください.

No.05 連立方程式と不等式

Prime-Quest 自動ジャッジ 難易度:
14月前

3

問題

次の実数 $a,b,c$ に対し,つねに $|ax+by|\leqq |c|$ となる実数 $x,y$ の和の値域幅を求めよ.

  • $p,q$ の連立方程式 $ap+bq=c,\ (b-c)p+(c+a)q=a+7b$ は解を複数個もつ.

解答形式

半角数字で入力してください.


${}$ 西暦2025年問題第2弾です。第1弾に引き続き虫食算で、今回は掛け算にしてみました。数学的手法(約数や倍数、偶奇性や剰余、不等式による絞り込み、などなど)を適宜用いることで面倒な場合分けや仮置きを軽減できるよう仕込んでいるのは変わりません。パズル的に解くのもよし、数学的にゴリゴリ解くのもよし、どうぞお好きなようにお楽しみください!

解答形式

${}$ 解答は上2行を「被乗数×乗数」の形で入力してください。
(例) $2025 \times 102 = 206550$ → $\color{blue}{2025 \text{×} 102}$
 入力を一意に定めるための処置です。数字は半角で、「×」の演算記号はTeX記法(\times)でも、絵文字や環境依存文字でもなく、全角記号の「×」でお願いします。空白(スペース)も入れる必要はありません。

まわりまわる面積比較

kusu394 自動ジャッジ 難易度:
11月前

3

問題文

四角形 $ABCD$ と三角形 $XYZ$ は以下の条件を満たします.
$$AD=505, \hspace{1pc} BC=507, \hspace{1pc} AB=CD, \hspace{1pc} \angle ABC=60^\circ, \hspace{1pc} \angle DCB=80^\circ$$ $$YZ=1, \hspace{1pc} XY=XZ, \hspace{1pc} \angle YXZ=40^\circ$$ このとき, 四角形 $ABCD$ の面積は三角形 $XYZ$ の面積の何倍ですか.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

追記:
若干日本語がおかしかったため編集しました. 解答には影響はないと思われます.
一応ヒント2に元の問題文を残してあります. 以上, よろしくお願いします.

素数と方程式

noname 自動ジャッジ 難易度:
13月前

3

問題文

$p,q$を素数、$n$を整数とします。
$$
p^{4}+2q^{2}-2^{n}=635
$$
を満たす$p,q,n$の組$(p,q,n)$を全て求めてください。

解答形式

$p+q+n$の値の総和を半角で解答してください。


問題文

三角形 $ABC$ があり,以下が成り立っています:

$$AB = 7 , \angle A + 2\angle C = 60^{ \circ } .$$

いま,辺 $BC$ 上に $\angle CAP = 3\angle BAP$ をみたす点 $P$ をとり,さらに辺 $AC$ 上に $\angle APQ = 2\angle ACB$ をみたす点 $Q$ をとったところ,$BQ = 2$ が成立しました.このとき,線分 $AC$ の長さは互いに素な正整数 $a , b$ を用いて $\dfrac{ a }{ b }$ と表せるので,$a + b$ を解答してください.

解答形式

半角数字で解答してください.

No.01 展開と因数分解

Prime-Quest 自動ジャッジ 難易度:
15月前

5

問題

$(1)$ $4$ つの実数 $(10\pm\sqrt 2\pm 4\sqrt 3)^3+1$ の和と等しい整数の最大素因数を求めよ.
$(2)$ 方程式 $(2x^2-x)(2x^2-7x+6)=7$ の実数解 $x$ に対する $x^5-\dfrac{1}{x^5}$ の値を求めよ.

解答形式

$(1),(2)$ の和を半角数字で入力してください.

11月前

4

問題文

図のような、一目盛りが1cmの方眼に書いた図形があります。三角形ABCと三角形ACEは合同で、角ADF=90°です。DFは何cmですか。

解答形式

四捨五入して小数第2位まで、半角数字で答えてください。
例)$\frac{52}{3}$→17.33

immovable

yuuki_sakimori 自動ジャッジ 難易度:
4年前

10

問題文

自然数$a,b,c,d$は
$$
a\neq b
$$ $$
(a+b)(a-b)+(ad-bc)=0
$$ $$
bc-a^2=1
$$
を満たしています.このとき
$$
\frac{c-d}{a-b}
$$
の取り得る値を全て求めてください.

解答形式

半角数字で解答してください.複数ある場合は小さい順に一行ずつ入力してください.
Ex:答えが「1」と「-$\frac{3}{89}$」と「100」のとき
-3/89
1
100
と解答してください.

345

hkd585 自動ジャッジ 難易度:
2年前

3

問題文


$AB=AC=3$ なる $\triangle ABC$ がある.辺 $BC$ の $C$ 側の延長上に,$AD=5$ なる点 $D$ をとる.$\triangle ABD$ の外接円において,$B$ を含まない弧 $AD$ 上に,$DE=4$ なる点 $E$ をとる.直線 $CE$ と $\triangle ABD$ の外接円との交点のうち,$E$ でないものを $F$ としたら,$EF=\dfrac{48}{\sqrt{91}}$ となった.このとき,
$$
BF=\dfrac{a}{b}
$$
である.ただし,$a,b$ は互いに素な自然数である.

$\boldsymbol{\underline{a^{2}+b^{2}}}$ の値を求めよ.

解答形式

半角数字で解答してください.

Final 5

seven_sevens 採点者ジャッジ 難易度:
3月前

4

$a$は$x$と独立であるとする。
$x$の方程式
$$(\cos^4x)^{\log_2(a\sin x)+1}=(a\sin2x)^{\log_2(a\sin2x)}$$
の$0\leqq x\leqq \frac\pi2$における解を$y$とする。
この時、以下の値を求めよ。
$$\int_0^1\frac1{\sin^2y}da$$