$r$ を正の整数とする。$xyz$ 空間において,原点を中心とする半径 $\sqrt{r}$ の球面を $S_r$ で表すとき,次の問いに答えなさい。
※点 $(x,y,z)$ が格子点であるとは,$x,y,z$ がすべて整数であることをいう。
改行区切りで,1行目に 1. の答えを,2行目に 2. の答えを入力してください。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
以下のような数列 $\{a_n\}$ を考える。 $$ a_n=1+\sum_{m=1}^{2^n}{\rm floor}\left[\sqrt[n]{\frac{n}{\displaystyle{\sum_{k=1}^m}\; {\rm floor}\left(\cos^2\cfrac{(k-1)!+1}{k}\pi\right)}}\right] $$なお、${\rm floor}(x)$ は $x$ 以下の最大の整数を返す関数とする。このとき、$a_{20}$ を求めよ。
ただし、必要であれば以下の定理および不等式を用いても良い。
半角数字で入力してください.
$y=\tan x \; \left(-\cfrac{\pi}{2}<x<\cfrac{\pi}{2}\right)$ の逆関数を $x=f(y)$ とする.このとき, $$ S=\sum_{n=0}^\infty f\left(\frac{1}{n^2+n+1}\right) $$を求めよ.答えは,整数ア・イを用いて $$ S=\frac{\fbox{ア}}{\fbox{イ}}\pi $$と既約分数の形でかける.
アとイをそれぞれ1行目、2行目に半角数字で入力せよ.
$n\;(\geq 2)$ を自然数とするとき,以下の試行を行うことを考える。
試行
$n$ 人がmodじゃんけんを $1$ 回行い,全員が生存するか全員が脱落するとき,modじゃんけんの結果はあいこになると定義する。
$n$ 人がmodじゃんけんを $1$ 回行ってあいこになる確率を $p_n$ とするとき
$$ p_2=\frac{\fbox{ア}}{\fbox{イ}},\; p_3=\frac{\fbox{ウ}}{\fbox{エ}},\; p_4=\frac{\fbox{オ}}{\fbox{カキ}} $$
である。$n$ を $\fbox{ク}$ で割った余りが $\fbox{ケ}$ であるとき
$$ p_n=\frac{\fbox{コ}^{n}+\fbox{サ}}{\fbox{シ}^n} $$
であり,そうでないときには
$$ p_n=\frac{\fbox{コ}^{n}+\fbox{ス}}{\fbox{シ}^n} $$
である。また,
$$ \lim_{n\to\infty} p_n=\fbox{セ} $$
が成り立つ。
空欄 $\fbox{ア}$ 〜 $\fbox{セ}$ には,半角数字 0 - 9 または記号 - のいずれかが当てはまります。$\fbox{ア}$ 〜 $\fbox{セ}$ に当てはまるものを改行区切りで入力してください。分数はこれ以上約分できない形で解答してください。
0
9
-
数列 $ \{ a_n \} $ $(n=1,2\dots)$ を、 $$ a_1=2,\ a_2=3,\ a_{n+1} = \max_{1 \leqq k \leqq n} \{ (n-k+1)a_k \}\ (n \geqq 2) $$
で定める。$ \{ a_n \} $ の一般項を求め、さらに $\log_{3}{(a_{6062})}$ の値を求めよ。
$\log_{3}{(a_{6062})}$ はある自然数となるので、その値を半角数字で答えよ。
図中の青い線分の長さはすべて10,赤で示した角はすべて等しいです。 このとき、緑色部分(凹四角形)の面積を求めてください。 解答形式に注意!
$答えはA\sqrt{B}の形になります。(A,Bは自然数)$ $A+Bを解答してください。$ $<注意>$ $根号の中が最小となるようにしてください。$ $半角数字で解答してください。$ $例 : green area=10\sqrt{8}=20\sqrt{2}→A=20,B=2→22 と解答$
正方形が2つ、図のように配置されています。赤い線分の長さが20のとき、緑で示した四角形の面積を求めてください。 ただし、図中の青点はそれぞれの正方形の対角線の交点です。
半角数字で解答してください。
$p^2+q^2+r^2+s^2=t^4+1$を満たす素数$(p,q,r,s,t)$の組を全て求めよ。但し$p\leq q\leq r\leq s$とする。
一行目に式を満たす組が何組あるか答えよ。また、そのような組の中で、$t$が最大であるものについて、$p,q,r,s,t$の値をそれぞれ2行目、3行目、4行目…へ記入せよ。いずれも数字のみ記入せよ。
(本当は解き方まで見たいですが、個別判定が大変なのでこの形式にします。できれば、なぜそうなるかもしっかり考えてください。)
定積分
$$ \int_0^{\pi/2}\dfrac{\cos{x}-x}{1+\sin{x}}dx $$
を計算せよ。
半角数字で答えよ。無理数や記号等を用いる場合はTeX形式で入力せよ。
三角形の外側に3つの正方形を図のように作りました。橙・緑・紫の線分の長さを3辺の長さとする三角形(赤い三角形)の面積が57のとき、元の三角形(青い三角形)の面積を求めてください。
△ABCと点Pをとり、△ABP, △BCP, △CAPの重心をそれぞれ$G_1, G_2, G_3$とします。青で示した3つの三角形の面積の和が10のとき、$△G_1G_2G_3$(赤い三角形)の面積を求めてください。
$\sqrt[10] {10}$ の小数第一位の値を求めよ。 ただし, $\log_{10}{2}=0.3010$ とする。
答えを半角数字で入力してください。
ピザが1枚ずつ乗った $N\;(\geq 2)$ 枚の皿が横一列に並んでいます.ピザには表と裏があり,表には具がのっていて,裏にはのっていません.はじめ,すべての皿のピザは表が上になっています.これらのピザに対して,次の操作Xを考えます.
操作X:
この操作Xを$\;N-1\;$回繰り返すと,1枚の皿にピザの塔ができます.操作Xの $N-1$ 回の繰り返しをピザの調理ということにします.ピザの塔を構成するピザを,上から順に$\;P_i\; (i=1,\cdots, N)\;$とし,$P_i$ が表を上に向けているとき「表」,裏を上に向けているとき「裏」と書くことにすると,ピザの塔は「裏裏裏表」のように表すことができます.
$N=6$とします.「裏裏裏裏表表」というピザの塔ができるような調理は何通りあるか答えなさい.
半角数字で入力してください.