数学 中学1年生 実力テスト 対策テスト

18jn-055@izo-ed.jp 自動ジャッジ 難易度: 数学 > 中学数学
2025年1月29日21:39 正解数: 7 / 解答数: 34 (正答率: 20.6%) ギブアップ数: 2

−5−(−3)の問題では、−が隣り合っており、
ヒントの(-)-(-)の場合だと、(-)+(+)になる性質を使うと、
−5+(+3)になって、答えは-2になります。


おすすめ問題

この問題を解いた人はこんな問題も解いています

計算問題

18jn-055@izo-ed.jp 自動ジャッジ 難易度:
10月前

15

工夫して答えなさい。

99×99=?

15月前

21

問題文

$\log_227$の整数部分を答えよ

因数分解の応用

ac 自動ジャッジ 難易度:
10月前

12

問題

次の式を計算しなさい。

$$
\frac{(28^{2}+28-27^{2}+27)^{2}}{5!^{2}}-(\frac{11}{12})^{2}
$$

簡単な幾何

lamenta 自動ジャッジ 難易度:
17月前

20

問題文

$∠BAC=30°$、$BC =3$である$△ABC $について、$AB$の最大値を解答してください。

解答形式

半角数字で解答してください。

11月前

6

${}$ 西暦2025年問題第3弾です。九九表81個の数の総和を求めると2025であることが、いろいろなところで語られています。それを元にアレンジしてみました。工夫をして計算してほしいところですが、根性でもどうぞ!

解答形式

${}$ 解答は求める和をそのまま入力してください。
(例)103 → $\color{blue}{103}$

A

wasab1 自動ジャッジ 難易度:
13月前

33

問題文

垂心を $H$ とする鋭角三角形 $ABC$ において,直線 $AH$ と辺 $BC$ の交点を $D$ とすると,
$$BH=2,CH=7,DH=1$$
が成り立ちました.このとき,三角形 $ABC$ の面積の $2$ 乗を求めてください.

解答形式

半角数字で入力してください。

OMC没問2

Kta 自動ジャッジ 難易度:
9月前

4

問題文

$\angle{A}=60^\circ,AB<AC$ なる三角形 $ABC$ について,その外心を $O$ ,垂心を $H$ とします.直線 $OH$ と直線 $AB$ との交点を $P$ としたとき,以下が成立しました.$$AP=8,AH=7$$このとき,三角形 $ABC$ の面積は互いに素な正整数 $a,c$ および平方因子を持たない正整数 $b$ を用いて $\displaystyle\frac{a\sqrt{b}}{c}$ と表せるので,$a+b+c$ を解答してください.

解答形式

半角数字で入力してください。

京大作サーマスガチャ2025 - R18改

Kta 自動ジャッジ 難易度:
24日前

5

問題文

三角形 $ABC$ について,線分 $BC$ の中点を $M$ とし,$\angle ABC$ の二等分線と直線 $AM$ との交点を $D$ とすると,以下が成立した.
$$BC=4,\angle ADB=\angle AMC=3\angle BAM$$このとき,線分 $AC$ の長さの二乗は正整数 $a,b$ を用いて $a+\sqrt b$ と表せるので,$a+b$ を解答せよ.

解答形式

半角数字で入力してください。

中線と垂線

kusu394 自動ジャッジ 難易度:
15月前

7

問題文

$\angle ABC $ と $\angle BCA$ が鋭角であるような $\triangle ABC$ について,辺 $BC$ の中点を $M$ とします.また,$M$ から辺 $AB,AC$ におろした垂線の足をそれぞれ $P, Q$ とすると、線分 $AM, BQ, CP$ が一点で交わります.

$$ AB = 12, \ \ BC= 20 $$

のとき,$\triangle ABC$ の面積の二乗としてありうる値の総和を解答してください。

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

幾何No.3

alpha 自動ジャッジ 難易度:
16日前

6

問題

$AB=3$なる鋭角三角形$ABC$について, $AC$, $BC$の中点をそれぞれ$M$, $N$とすると, $AN=4$が成立した. また, 三角形$ANC$の外接円と直線$MN$との交点のうち, $N$でないほうを$D$とすると, $DC=9$が成立した. このとき, $AD$の長さの二乗は互いに素な正整数$a$, $b$を用いて$\frac{a}{b}$と表されるので$a+b$を解答せよ.

整数問題α

katsuo_temple 自動ジャッジ 難易度:
12月前

26

問題文

以下の式を満たす任意の正整数の組$(x,y)$について、$xy$としてありうる値の総和を求めて下さい。
$$
x^{y}=y^{x-y}
$$

解答形式

半角数字で解答して下さい。

文化祭算数問題 2

sta_kun 自動ジャッジ 難易度:
15月前

14

問題文

四角形 $ABCD$ について,角 $DBC=20°$,角 $BDC=90°$,角 $ADB=40°$,$AD:BC=1:2$ が成り立ちました.このとき角 $ABD$ は何度ですか?

解答形式

半角数字で解答して下さい.