アクセスがしづらい状況について (2025年1月23日14:22)
現在、ポロロッカにアクセスがしづらい状況が発生しております。 サーバー強化など応急処置は完了しておりますが、本格的な調査は2月ごろとなる見込みです。 ご迷惑をおかけし、大変申し訳ございません。

[C] Soft Spring

masorata 自動ジャッジ 難易度: 数学 > 大学数学
2024年2月16日21:00 正解数: 3 / 解答数: 3 (正答率: 100%) ギブアップ不可
微分方程式 微積分 MCA
この問題はコンテスト「MCA the 1st」の問題です。

全 3 件

回答日時 問題 解答者 結果
2024年10月13日11:24 [C] Soft Spring Weskdohn
正解
2024年2月18日10:55 [C] Soft Spring Prime-Quest
正解
2024年2月17日15:05 [C] Soft Spring halphy
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

[B] Symmetric Concavity

masorata 自動ジャッジ 難易度:
12月前

3

問題文

関数 $f:(0,\infty)\to(0,\infty)$ は $C^2$級で、任意の $x>0$ に対して

$$
f(1)=1,\ \ f\left(\frac{1}{x}\right)=\frac{f(x)}{x},\ \ \frac{d^2}{dx^2} f(x)\leq 0,\ \ \frac{d^2}{dx^2} \left( \frac{1}{f\left(\frac{1}{x}\right)} \right) \leq 0
$$

をすべて満たすとする。このような $f$ に対し

$$
I [f]=\int_{\frac{1}{2}}^{2}f(x)dx
$$

を考える。

(1)$I[f]$ の最大値は $\displaystyle \frac{\fbox{アイ}}{\fbox{ウエ}}$ である。
(2)$I[f]$ の最小値は $\fbox{オ}-\fbox{カ}\log\fbox{キ}$ である。ただし $\log$ は自然対数である。

解答形式

ア〜カには、0から9までの数字が入る。
(1)の答えとして、文字列「アイウエ」をすべて半角で1行目に入力せよ。
(2)の答えとして、文字列「オカキ」をすべて半角で2行目に入力せよ。
ただし、対数の中身が最小となるように答えよ。


問題文

$N$ を正の整数、$c>0$ を定数とする。実数の組 $(t_1,t_2,\ldots,t_N)$ に対して関数

$$
f_n(t_1,t_2,\ldots,t_N)=t_n(1-t_n)\left(c(1+t_n)-\sum_{i=1}^{N}t_i\right) \ \ \ (n=1,2,\ldots ,N)
$$

を考える。また、$N\times N$ 行列 $J(t_1,t_2,\ldots,t_N)$ を

$$
J(t_1,t_2,\ldots,t_N) =
\left(
\begin{array}{ccc}
\frac{\partial f_1}{\partial t_1} & \cdots & \frac{\partial f_1}{\partial t_N} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_N}{\partial t_1} & \cdots & \frac{\partial f_N}{\partial t_N}
\end{array}\right)
$$

と定義する。

$N=1000,\ \displaystyle{c=\frac{1000}{1.23}}$ として、以下の問いに答えよ。

(1)$1000$個の実数の組 $(x_1,x_2,\ldots,x_{1000})$ であって、$x_1\leq x_2 \leq \ldots \leq x_{1000} $ かつ

$$
f_n(x_1,x_2,\ldots,x_{1000})=0\ \ \ (n=1,2,\ldots ,1000)
$$

を満たすものはいくつあるか。

(2)(1)で考えた組のうち、$J(x_1,x_2,\ldots,x_{1000})$ の固有値の実部がすべて負であるようなものはいくつあるか。

解答形式

(1)の答えを半角数字で1行目に入力せよ。
(2)の答えを半角数字で2行目に入力せよ。

[A] Triple Matrix

masorata 自動ジャッジ 難易度:
12月前

16

問題文

正の整数 $a,b,c$ が

$$
\begin{pmatrix} 1 & 1 & 0\\ 0 & 1 & 0 \\ 0 & 0 & 1\end{pmatrix}^a
\begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 1 \\ 0 & 0 & 1\end{pmatrix}^b
\begin{pmatrix} 1 & 0 & 1\\ 0 & 1 & 0 \\ 0 & 0 & 1\end{pmatrix}^c
=\begin{pmatrix} 1 & 20 & 2024\\ 0 & 1 & 24 \\ 0 & 0 & 1\end{pmatrix}
$$

を満たすとき、$a+b+c$ の値を求めよ。

解答形式

半角数字で1行目に入力せよ。

14日前

2

問題文

$abc=def=ghi=adg=beh=cfi=2025^2$を満たす正の整数の組$(a,b,c,d,e,f,g,h,i)$はいくつあるか.

解答形式

半角で解答してください.

hinu積分02

hinu 採点者ジャッジ 難易度:
4年前

1

問題

(1) 定積分

$$
\int_0^1 \frac{x\log x}{(x+1)^2}dx
$$

の値を求めよ。

(2) 関数列 ${f_n(x)}$ を

$$
f_{n+1}(x)=(x^x)^{f_n(x)},\quad f_1(x)=x^x
$$

で定める。定積分

$$
\int_0^1(x^x)^{{(x^x)}^{(x^x)\cdots}}dx:=\int_0^1\lim_{n\to \infty} f_n(x)\ dx
$$

の値を求めよ。ただしテトレーション $x^{{x^{x\cdots}}}$ は底 $x$ が $e^{-e}<x<e^{1/e}$ のとき収束することは証明せずに用いて良い。

備考

この問題の正解判定は出題者により手動で行われるため、判定までに時間がかかることがある。

いつものking property(に似た)問題

nps 自動ジャッジ 難易度:
1日前

1

問題文

∮(-π/6→π/3) ((sinx)^3)/(sinx+cosx)dxの値を求めよ。

解答形式

解答は π/a-(√ b+c)/d-(1/e)log(√f+g)の形になります。
a,b,c,d,e,f,gに当てはまる自然数を順に半角で答えてください。
また、1つの値の間は1つずつ空白を開けるようにしてください。
(例)a=2, b=3, c=11,d=5,e=6,f=7,g=8の場合、
2 3 11 5 6 7 8


問題文

nを一桁の自然数とする。xについての多項式、

∫(0→x) (t^3 + {1/√(n-2)(n-3)(n-4)} t^-2 +1)^n dt

について、x^6の係数を自然数にするようなnを求めなさい。

解答形式

半角で一桁の数字を入力してください。

円周率 1

hinu ジャッジなし 難易度:
4年前

4

問題文

$\pi$ が $\dfrac{1000\pi}{1001}\risingdotseq 3.13845\cdots$ よりも大きいことを示せ


問題文

以下の漸化式で与えられる数列${a_n},{b_n}$を考える。ただし、$n$は非負整数であるとし、${a_n}$の初項は$a_0=1$とする。
$\displaystyle a_{n+1}=\sum_{k=0}^na_ka_{n-k} , \displaystyle b_{n+1}=\sum_{k=0}^n (k+1)a_ka_{n-k}$
(1)$b_n$を$a_n$で表わせ。
(2)$\displaystyle a_{n+1}=\frac{2(2n+1)}{n+2}a_n$を証明せよ。
(3)それぞれの数列の一般項$a_n,b_n$を求めよ。
(4)$\displaystyle \lim_{n \to \infty} \sqrt[n]{a_n}$を求めよ。ただし$\displaystyle\lim_{n \to \infty} \frac{\log n}{n}=\lim_{n \to \infty} \frac{\log(n+1)}{n}=0$を証明無しで用いても良い。

解答形式

(4)の答えを半角数字またはTeXで入力してください。
(1)~(3)についてはお手持ちの紙に解答し、解説を確認ください。

4次関数の性質

zyogamaya 自動ジャッジ 難易度:
3年前

2

問題文

4次関数のグラフ$C:y=f(x)$は2つの変曲点$\mathrm{P},\mathrm{Q}$をもち、1本の複接線が引けて、異なる2点$\mathrm{A}(\alpha,f(\alpha)),\mathrm{B}(\beta,f(\beta))$が接点となる。また$f(x)$の4次の係数は1である。このとき、$\displaystyle\frac{d^3}{dx^3}f(x)=0$の解を$x=\gamma$、$\mathrm{C}(\gamma,f(\gamma))$、複接線を$l_1$、直線$\mathrm{PQ}$を$l_2$、$C$上の点$\mathrm{C}$における接線を$l_3$、$l_2$と$C$の交点のうち$\mathrm{P},\mathrm{Q}$と異なる点をそれぞれ$\mathrm{R},\mathrm{S}$、$l_3$と$C$の交点のうち$\mathrm{C}$と異なる点をそれぞれ$\mathrm{D},\mathrm{E}$とおく。ただし$x$座標について、$\mathrm{A}$より$\mathrm{B}$、$\mathrm{P}$より$\mathrm{Q}$、$\mathrm{R}$より$\mathrm{S}$、$\mathrm{D}$より$\mathrm{E}$の方が大きいとする。

(1)直線$l_1,l_2,l_3$は互いに平行であることを示せ。

(2)線分長の2乗比$\mathrm{AB}^2:\mathrm{PQ}^2$を求めよ。

(3)線分長の2乗比$\mathrm{RS}^2:\mathrm{DE}^2$を求めよ。

(4)直線$l_2$と$C$で囲まれる部分の面積$S$を$\alpha,\beta$で表わせ。

解答形式

(2),(3),(4)の答えはそれぞれ一桁の自然数a,b,c,d,e,f,g,h,i,jを用いて以下のように表されます。
センター、共通テスト形式で埋め、10桁の自然数abcdefghijを答えてください。
$\mathrm{AB}^2:\mathrm{PQ}^2=a:b$
$\mathrm{RS}^2:\mathrm{DE}^2=c:d$
$S=\displaystyle\frac{e\sqrt{f}}{ghi}(\beta-\alpha)^j$

Roly Poly

halphy 自動ジャッジ 難易度:
4年前

2

問題文

$m$ と $n$ を互いに素な自然数とします.実数係数多項式 $f(x)$ が次の性質をもっているとき,$f(x)$ を $m,n$-生成の多項式と呼ぶことにします.

  • 性質:すべての実数係数多項式 $g(x)$に対して,$f(x)g(x)=h(x^m, x^n)$ となるような実数係数の2変数多項式 $h(x,y)$ が存在する.

$x^k$ がすべての $10,n$-生成の多項式を割り切るような最大の自然数 $k$ は


です.ただし,単項式も多項式に含まれるとします.

解答形式

センター試験方式です.ア,イ,ウにはそれぞれ 0,1,2,3,4,5,6,7,8,9 および -,a,b,c,d のいずれか1文字が当てはまります.ア,イ,ウに 1, 2, 3 が当てはまるなら,123 と回答してください.

Almost Linear

okapin 自動ジャッジ 難易度:
4年前

13

問題文

$n$を2以上の整数とし, $f(x)=\sqrt[n]{x^n+nx^{n-1}} (x\geq0)$を考える。

$(1)$ $x$を正の整数とするとき, $f(x)$の値が整数でないことを示せ。

$(2)$ $y=f(x)$, $x$軸, $x=m-1$ ($m$は正の整数) で囲まれた領域内(境界線上も含む)の格子点の数を求めよ。

解答形式

$(2)$ で $m=100$ のときの答えを半角数字で入力してください。