よじさんじ

masorata 自動ジャッジ 難易度: 数学 > 高校数学
2020年6月7日20:25 正解数: 10 / 解答数: 13 (正答率: 76.9%) ギブアップ不可

問題文

実数$ a $ を $a=\sqrt[3]{1+\sqrt2} +\sqrt[3]{1-\sqrt2}$ で定める。以下の問いに答えよ。

⑴ $a^3+3a-2=0$ であることを示せ。また、$0<a<2$ を示せ。

⑵ $x$ について以下の恒等式が成り立つことを示せ。
$$
x^4+4x-3=(x^2+a)^2-2a\left(x-\frac{1}{a}\right)^2
$$

⑶ 4次方程式 $x^4+4x-3=0$ の実数解を $a$ を用いて表せ。

解答形式

⑶のみ解答せよ。解は2つ存在し、
$$
x= -\sqrt{\frac{ア}{イ}}\ \pm \ \sqrt{\sqrt{\frac{ウ}{エ}}-\frac{オ}{カ}}
$$

の形である。ア~カのそれぞれには1から9までの自然数または文字$a$が入る。
ア~カに当てはまる数字または文字を、順にすべて半角で入力せよ。
たとえばア=2、イ=7、ウ=3、エ=5、オ=8、カ=$a$ と解答する場合は、
「27358a」と入力せよ。


ヒント1

$\alpha=\sqrt[3]{1+\sqrt2}, \beta=\sqrt[3]{1-\sqrt2}$ とおくと$\alpha^3+\beta^3 = 2, \alpha\beta=-1$ であることを用いよ。
また $f(t)=t^3+3t-2$ とおくと、$f(t)$が単調増加であることに注意せよ。

ヒント2

示すべき式の右辺を展開してみよ。⑴の結果を利用せよ。

ヒント3

⑵で示した式から、扱いやすい2つの方程式に帰着させよ。⑴で示した$a$を評価する不等式を用いて、2つの方程式のどちらが実数解を持つか吟味せよ。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

tan三兄弟

masorata 自動ジャッジ 難易度:
4年前

30

問題文

実数 $A,B,C \ (-\pi/2<A<B<C<\pi/2)$ が

$$
\frac{1+\tan^3{A}}{1+3\tan^2A}=\frac{1+\tan^3{B}}{1+3\tan^2B}=\frac{1+\tan^3{C}}{1+3\tan^2C}\\
$$

をみたして動くとき、$\tan{(A+B+C)}$ がとりうる値の範囲を求めよ。

解答形式

解は $ m<\tan{(A+B+C)}< M$ の形で、$m,M$ はどちらも整数である。
$m,M$の値をそれぞれ1,2行目に半角数字で入力せよ。
例えば $m=-33, M=4$ と解答する場合、1行目に「-33」、2行目に「4」と入力せよ。

(20/06/21: よりシンプルな問題文に直しました。答えはそのままです。)

カオス的数列

masorata 自動ジャッジ 難易度:
4年前

9

問題文

関数 $f(x)$ を $f(x)=4x(1-x)$ で定義し、数列 $ \{ x_n \} $ $(n=1,2\dots)$ を、
$$
x_1=\sin^2{1}=0.708073418...,\ \ x_{n+1} = f(x_n) \ \ (n=1,2,...)
$$

で定める。このとき、 極限値 $\displaystyle \lim_{n \to \infty} \frac{1}{n}\sum_{k=1}^n \log|f'(x_k)|$ を求めよ。

注: 角度の単位はラジアンを用いる。 $\log$ は自然対数を表すものとする。また、$\pi$ が無理数であることは認めてよい。

解答形式

求めた極限値を小数で表し、絶対値の小数第4位を四捨五入したものに、必要ならば負号をつけて答えよ。すべて半角で入力すること。
例1: $2\pi = 6.2831...$と解答する場合には、「6.283」と入力せよ。
例2: $-\pi = -3.1415...$と解答する場合には、「-3.142」と入力せよ。

また、必要なら以下の自然対数の値を用いよ。
$\log2 = 0.6931..., \log3=1.0986... ,\log7 =1.9459...$

expもどき

masorata 自動ジャッジ 難易度:
4年前

10

問題文

すべての複素数に対して定義され、複素数の値をとる関数 $f(z)$ は、すべての複素数 $z,w$ について

$$
f(z+w)=f(z)f(w)+zw ...(*)
$$

をみたすとする。以下の問いに答えよ。

⑴ すべての複素数 $z$ について $f(2)f(z)+z = f(1)f(z+1)+1$ が成り立つことを示せ。
⑵ $(*)$ をみたすような $f(z)$ をすべて求めよ。

解答形式

⑵を解答したうえで、以下の空欄ア~エに当てはまる0~9の整数を順に並べて4桁の半角数字「アイウエ」を入力せよ。根号の中身が最小になるように解答せよ。

$|f(5+11i)|$ のとりうる値のうち最大のものは$(アイ)$, 最小のものは$(ウ)\sqrt{(エ)}$ である。

二等分2

okapin 自動ジャッジ 難易度:
4年前

4

問題文

$xy$平面において点$O$を中心とする単位円上に異なる2点を取り、それぞれ$P_0,Q$とする(ただし$P_0,O,Q$は一直線上にないものとする)。また、$\angle P_0OQ$のうち小さい方の角を$\theta$とする$(0<\theta<\pi)$。
これから、以下の操作を$i=1,2,3,…,n$について計$n$回行う。

(操作)
弧$P_{i-1}Q$のうち短い方の弧を2等分するような単位円上の点を$P_i$とし、$\triangle P_{i-1}P_iQ$の面積を$S_i$とする。

このとき、
$$S_i=\sin\frac{\theta}{\fbox{ア}^i}-\frac{1}{2} \sin\frac{\theta}{\fbox{イ}^{i-1}}$$となるので、
$$\sum_{i=1}^n2^{i-1}S_i=\frac{1}{2}\left(\fbox{ウ}^n\sin\frac{\theta}{\fbox{エ}^n}-\sin\theta\right)$$となる。ここで$n\to\infty$とすると
右辺の極限値は、
$$\frac{1}{2}(\theta-\sin\theta)$$となり扇形$P_0OQ$から$\triangle P_0OQ$を取り除いた図形の面積に収束することが分かる(図形的にも明らか)。

解答形式

$\fbox{ア}$~$\fbox{エ}$に入る整数を半角で1,2,…行目に入力してください。

求長問題2

Kinmokusei 自動ジャッジ 難易度:
4年前

9

問題文

直径10の半円中に、直径の和が10となる2つの半円を図のように配置します。点Aを大半円の弧上にとり、線分AB,ACと小半円の交点をD,Eとします。
$BD^2+DE^2+EC^2$が最小となるようにしたとき、その最小値を求めてください。

解答形式

半角数字で解答してください。

hinu積分01

hinu 自動ジャッジ 難易度:
4年前

16

問題

定積分

$$
\int_0^{\pi/2}\dfrac{\cos{x}-x}{1+\sin{x}}dx
$$

を計算せよ。

回答形式

半角数字で答えよ。無理数や記号等を用いる場合はTeX形式で入力せよ。

Thirteen Ones

halphy 自動ジャッジ 難易度:
4年前

27

問題文

$n\geq 2$ を自然数とする。$2$ 進数表記で
\begin{equation}
N=\underbrace{11\cdots 11}_n \underbrace{00\cdots 00} _ {n-1} {} _ {(2)}
\end{equation}と表される自然数 $N$ を考える。$n=13$ のとき,$N$ の正の約数の総和を求めなさい。

解答形式

$2$ 進数で答えなさい。

漸化式

zyogamaya 自動ジャッジ 難易度:
3年前

5

問題文

$a_1=1,na_{n+1}-2(n+2)a_n=(n+1)(n(n+2)+2^{n+1})$を満たす数列${a_n}$の一般項を求めよ。

解答形式

一般項は一桁の自然数$a,b,c,d$を用いて、$a_n=(an^2+n-b)c^{n-1}-n(n+d)$と表されるので、$abcd$を解答してください。


$(a,b,c,d)=(1,2,3,4)$→$1234$を入力

うぉり~っす

masorata 自動ジャッジ 難易度:
4年前

8

問題文

数列 $ \{ a_n \} $ $(n=1,2\dots)$ を、
$$
a_1=1,\ a_{n+1} = \sum_{k=1}^{n}\frac{8k-3}{4n^2-1}a_k\ (n = 1,2,...)
$$

で定める。$\displaystyle \lim_{n\to\infty}{a_{n}}$ を求めよ。

解答形式

求める極限値は、ある有理数 $q$ を用いて $q \pi$ と表せる。この $q$ を小数で表し、小数第4位を四捨五入したものを入力せよ。すべて半角数字で入力すること。なお、もし $3/2=1.5$のようになる場合は、$1.500$ と入力せよ。

求面積問題8

Kinmokusei 自動ジャッジ 難易度:
4年前

15

問題文

△ABCと点Pをとり、△ABP, △BCP, △CAPの重心をそれぞれ$G_1, G_2, G_3$とします。青で示した3つの三角形の面積の和が10のとき、$△G_1G_2G_3$(赤い三角形)の面積を求めてください。

解答形式

半角数字で解答してください。

[B] Triangles 1

halphy 自動ジャッジ 難易度:
4年前

16

問題文

$k>0$ を整数の定数とする。以下の条件

$$
{\rm AB}=8, {\rm AC}=k, \angle {\rm ABC}=60^{\circ}
$$

を満たす三角形 ${\rm ABC}$ が存在するような整数 $k$ の最小値は $\fbox{\text{ア}}$ である。

また,条件を満たす三角形 ${\rm ABC}$ が一意的に存在するような整数 $k$ の最小値は $\fbox{イ}$ である。

ただし,互いに合同であるような $2$ つの三角形は区別しない。

解答形式

空欄 $\fbox{ア}$ 〜 $\fbox{イ}$ には,半角数字 0 - 9 のいずれかが当てはまります。$\fbox{ア}$ 〜 $\fbox{イ}$ に当てはまるものを改行区切りで入力してください。

max漸化式

masorata 自動ジャッジ 難易度:
4年前

11

問題文

数列 $ \{ a_n \} $ $(n=1,2\dots)$ を、
$$
a_1=2,\ a_2=3,\ a_{n+1} = \max_{1 \leqq k \leqq n} \{ (n-k+1)a_k \}\ (n \geqq 2)
$$

で定める。$ \{ a_n \} $ の一般項を求め、さらに $\log_{3}{(a_{6062})}$ の値を求めよ。

解答形式

$\log_{3}{(a_{6062})}$ はある自然数となるので、その値を半角数字で答えよ。