問題文
$$
\newcommand{\nc}{\newcommand}
\nc{\wake}[1]{\begin{cases} #1 \end{cases}}
\nc{\f}[2]{\dfrac{#1}{#2}}
\nc{\s}[1]{\{#1\}}
\nc{\pmat}[1]{\begin{pmatrix} #1 \end{pmatrix}}
\nc{\lr}[1]{\left( #1 \right)}
\nc{\com}[2]{{}_{#1}{\rm C}_{#2} \right)}
\nc{\bar}[1]{{\overline{#1}}}
\nc{\bb}[1]{{\mathbb {#1}}}
\nc{\rmn}[1]{{\rm #1}}
\nc{\q}{\quad}
\nc{\x}{\times}
\nc{\a}{\alpha}
\nc{\b}{\beta}
\nc{\th}{\theta}
\nc{\Q}[1]{\fbox{#1}}
$$
下のように $\rm AB=1\ ,\ BC=2$ の長方形 $\rm ABCD$ がある。点 $\rm P$ は $t=0$ で点 $\rm A$ におり、 $1$ 秒間に $1$ の速度で辺の上を進む。点 $\rm P$ が 点 $\rm A,B,C,D$ のいずれかにいるとき確率 $p$ で辺 $\rm AB$ に平行な向きに、 $1-p$ の確率で辺 $\rm AD$ に平行な向きに向きを変え、それ以外の場所で向きを変えることはないものとする。
$p=\dfrac56$ とするとき点 $\rm P$ が $2n$ 秒後 $(n=0,1,2,\cdots)$ に点 $\rm A$ にいる確率を求めたい。
点 $\rm P$ が $2n$ 秒後に点 $\rm A,D$ にある確率を $A_n,D_n$ とおく。このとき $X_n=A_n+D_n$ とおくと漸化式
$$
X_{n+1}=\f{\Q{ア}}{\Q{イ}}X_n +\f{\Q{ウ}}{\Q{エ}}
$$
が成り立つ。また $Y_n=A_n-D_n$ とおくと漸化式
$$
Y_{n+2}-\f{\Q{オ}}{\Q{カ}}Y_{n+1}+\f{\Q{キ}}{\Q{ク}}Y_n=0
$$
が成り立つ。これらを初期条件 $X_0=\Q ケ\ ,Y_0=\Q{コ}\ ,Y_1=\f{\Q{サ}}{\Q{シ}}$ のもとで解くことで
$$
A_n=\f{\Q ス}{\Q セ}+\f{\Q ソ}{\Q タ}\lr{\f{\Q チ}{\Q ツ}}^n-\lr{\f{\Q テ}{\Q ト}}^n+\f{\Q ナ}{\Q ニ}\lr{\f{\Q ヌ}{\Q ネ}}^n
$$
を得る。なお ${\f{\Q チ}{\Q ツ}}<{\f{\Q ヌ}{\Q ネ}}$ である。
解答形式
上の空欄を埋めよ。解答は半角数字・改行区切りで入力すること。ただし $\Q ア$ から $\Q ネ$ にはそれぞれ 1
から 999
までの整数が入り、分数は既約分数の形で表してある。