極限

sulippa 自動ジャッジ 難易度: 数学 > 高校数学
2025年5月6日16:08 正解数: 5 / 解答数: 7 (正答率: 71.4%) ギブアップ数: 2
極限

全 7 件

回答日時 問題 解答者 結果
2025年7月18日18:19 極限 ゲスト
正解
2025年7月18日18:17 極限 ゲスト
正解
2025年5月17日18:24 極限 MACHICO
正解
2025年5月13日22:17 極限 Weskdohn
正解
2025年5月9日12:42 極限 ゲスト
不正解
2025年5月9日12:41 極限 ゲスト
不正解
2025年5月8日14:30 極限 tima_C
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

No.05 連立方程式と不等式

Prime-Quest 自動ジャッジ 難易度:
21月前

6

問題

次の実数 $a,b,c$ に対し,つねに $|ax+by|\leqq |c|$ となる実数 $x,y$ の和の値域幅を求めよ.

  • $p,q$ の連立方程式 $ap+bq=c,\ (b-c)p+(c+a)q=a+7b$ は解を複数個もつ.

解答形式

半角数字で入力してください.

三角関数の計算⑵

hkd585 自動ジャッジ 難易度:
3年前

5

問題文

次の計算をせよ.

$$
\sum_{k=1}^{2023}\sec\dfrac{6k-5}{6069}\pi\quad
$$

ただし,$\sec\theta=\dfrac{1}{\cos\theta}$とする.

解答形式

解答は整数となります.そのまま半角で入力してください.

整数問題

smasher 自動ジャッジ 難易度:
51日前

2

問題文

$x,y$を整数、$p$を素数とする。
$x^2-xy+y^2=2^p$を満たす組$(x,y,p)$をすべて求めよ。

解答形式

$x+y+p$の値としてありうる値の総和を半角数字で入力してください。


問題文

nを一桁の自然数とする。xについての多項式、

∫(0→x) (t^3 + {1/√(n-2)(n-3)(n-4)} t^-2 +1)^n dt

について、x^6の係数を自然数にするようなnを求めなさい。

解答形式

半角で一桁の数字を入力してください。

[F] 執根号神

masorata 自動ジャッジ 難易度:
4年前

2

問題文

$4$ 点 $\mathrm{A,B,C,D}$ が $\mathrm{AB=BC=CD}=1,\mathrm{DA}=2$ を満たし、さらに線分 $\mathrm{BC}$ と線分 $\mathrm{DA}$ が点 $\mathrm{P}$ で交わっている。線分 $\mathrm{AP}$ の長さが最大となるとき、

$$
\mathrm{AC}=\frac{\sqrt{\fbox{アイ}-\sqrt{\fbox{ウエオ}\ }+\sqrt{\fbox{カキクケ}+\fbox{コサ} \sqrt{\fbox{シスセ}\ }\ }\ }}{\fbox{ソ}}
$$

である。ただし、$\mathrm{XY}$ で線分 $\mathrm{XY}$ の長さを表すものとする。

ヒント

必要であれば以下の事実を用いてよい。

・実数 $a,b,c$(ただし $a\neq-64$ )について、$\displaystyle p=\frac{b+c-a^2}{a+64},q=64p+a^2-b$ とおくと、$x$ についての恒等式

$$
1024x^4+64ax^3+bx^2+2cx+p^2-q=(32x^2+ax+p)^2-q(x-1)^2
$$

が成り立つ(これは、右辺を展開して係数比較することで簡単に確かめられる)。

解答形式

ア〜ソには、0から9までの数字または「-」(マイナス)が入る。
文字列「アイウエオカキクケコサシスセソ」を半角で1行目に入力せよ。
ただし、分数はそれ以上約分できない形で、かつ根号の中身が最小になるように答えよ。

点つなぎ

yura 自動ジャッジ 難易度:
16日前

2

問題文

ある円周上に点をランダムに無限個打ち,打った順に $A_1,A_2,A_3,\cdots$ とします.また,以下のルールに従い点つなぎを行います.

ルール
  • ペン先を $A_1$ に置く.
  • 現在のペン先が $A_i$ にあるとき,$A_i$ と $A_{i+1}$ を線分で結ぶ.このとき,ペン先は $A_{i+1}$ へと移動する.
  • 途中で他の線分と端点を除いて交わってしまう場合,現在の線分を消して点つなぎを終了する.

引くことの出来る線分の本数の期待値を $E$,分散を $V$ としたとき $V=f(E)$ となる整数係数多項式 $f$ がただ $1$ つ存在するので,$|f(1685)|$ の値を解答してください.

解答形式

半角数字で解答してください

原始ピタゴラス数

sulippa 自動ジャッジ 難易度:
6月前

4

問題文

互いに素な整数の辺 $a,b,l$(斜辺 $l$)を持つ直角三角形を考える。内接円の半径を $r$、周長を $L$、面積を $S$ とする。
$L^2=kS$ ($k$ は正の整数) を満たすとき、
全てのkの値を求めよ。

解答形式

半角1スペースおきに小さい順に並べてください

No.06 二変数の整数解

Prime-Quest 自動ジャッジ 難易度:
21月前

3

問題

$(1)$ 方程式 $12x^2+4xy-21y^2=32x-32y+3$ の整数解 $(x,y)$ を求めよ.
$(2)$ 不等式 $z^2\lt a(a+1)z-a^3$ の奇数解 $z$ が二つとなる実数 $a$ の範囲を求めよ.

解答形式

$a^{xy}$ がとりうる整数の和を半角数字で入力してください.

整数問題 解説あり

sulippa 自動ジャッジ 難易度:
6月前

3

問題文

$p$ を $p \ge 5$ なる素数とする。集合 $G_p = {1, 2, \dots, p-1}$ の部分集合 $S$ が自己双対的であるとは、
$$a \in S \implies a^{-1} \pmod p \in S \quad \text{かつ} \quad a \in S \implies p-a \in S$$
が全ての $a \in S$ に対して成り立つことと定義する(ここで $a^{-1}$ は $\pmod p$ における $a$ の乗法逆元)。

$N_p$ を、$G_p$ の自己双対的な部分集合 $S$ の総数とする(空集合 $\emptyset$ も含む)。

$N_p = 32$ となるような素数 $p$ ($p \ge 5$) をすべて求めよ。


解答形式

解を半角1スペースおきに小さい順に並べてください

自作問題A1

imabc 自動ジャッジ 難易度:
19月前

11

問題文

正の実数 $x,y,z$ が $xyz=x+y+z+2$ を満たしています.このとき, $x+4y+9z$ の最小値を求めてください.

解答形式

答えを入力してください.

345

hkd585 自動ジャッジ 難易度:
2年前

4

問題文


$AB=AC=3$ なる $\triangle ABC$ がある.辺 $BC$ の $C$ 側の延長上に,$AD=5$ なる点 $D$ をとる.$\triangle ABD$ の外接円において,$B$ を含まない弧 $AD$ 上に,$DE=4$ なる点 $E$ をとる.直線 $CE$ と $\triangle ABD$ の外接円との交点のうち,$E$ でないものを $F$ としたら,$EF=\dfrac{48}{\sqrt{91}}$ となった.このとき,
$$
BF=\dfrac{a}{b}
$$
である.ただし,$a,b$ は互いに素な自然数である.

$\boldsymbol{\underline{a^{2}+b^{2}}}$ の値を求めよ.

解答形式

半角数字で解答してください.

No.01 展開と因数分解

Prime-Quest 自動ジャッジ 難易度:
22月前

6

問題

$(1)$ $4$ つの実数 $(10\pm\sqrt 2\pm 4\sqrt 3)^3+1$ の和と等しい整数の最大素因数を求めよ.
$(2)$ 方程式 $(2x^2-x)(2x^2-7x+6)=7$ の実数解 $x$ に対する $x^5-\dfrac{1}{x^5}$ の値を求めよ.

解答形式

$(1),(2)$ の和を半角数字で入力してください.