[E] 肩の2が降りる

masorata 自動ジャッジ 難易度: 数学 > 高校数学
2025年8月16日21:00 正解数: 1 / 解答数: 1 (正答率: 100%) ギブアップ不可
関数方程式 まそらた杯 極限 競技数学
この問題はコンテスト「第4回まそらた杯」の問題です。

全 1 件

回答日時 問題 解答者 結果
2025年8月17日0:22 [E] 肩の2が降りる okapin
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています


問題

$1234567$ 個の実数 $a_1,a_2,\ldots, a_{1234567}$ が、$n=1,2,\ldots,1234567$ に対して

$$a_{n+1}a_{n}a_{n-1}=a_{n+1}+a_{n}^2+a_{n-1}$$

を満たしている。ただし $a_0=a_{1234567},\ a_{1234568}=a_1$ とする。このような実数列 $a_1,a_2,\ldots, a_{1234567}$ には最大で何種類の異なる実数が現れるか。

解答形式

半角数字のみで1行目に入力せよ。


問題

以下の問いに答えよ。

(1)$a,b,c,d$ はいずれも $0$ でない実数の定数で、 $ad-bc\neq 0$ を満たしている。実数 $\displaystyle x\neq -\frac{d}{c} $ に対して関数 $f(x)$ を

$$
\displaystyle f(x)=\frac{ax+b}{cx+d}
$$

と定義すると、

$$
\frac{3\left(f''(x)\right)^2-2f'(x)f'''(x)}{\left(f'(x)\right)^2}
$$

の値は $a,b,c,d$ や $x$ によらないある整数となる。その値を求めよ。

(2)実数 $x$ に対して関数 $g(x)$ を

$$
\displaystyle g(x)=\frac{e^{4x+816}-e^{-4x-816}} {e^{4x+817}+e^{-4x-817}} \ \ \
$$

と定義すると、

$$
\displaystyle \frac{3\left(g''(x)\right)^2-2g'(x)g'''(x)}{\left(g'(x)\right)^2}
$$

の値は $x$ によらないある整数となる。その値を求めよ。

解答形式

0から9までの半角数字および-(マイナス)のうち、必要なものを用いて解答せよ。

(1)の答えを1行目に入力せよ。

(2)の答えを2行目に入力せよ。

たとえば、(1)に $816$、(2)に $-817$ と回答したいときは、

816
-817

と入力せよ。


問題

複素数の定数 $\alpha$ に対し、$|z- \alpha\bar{z}|\leq1-|\alpha|^2$ を満たす複素数 $z$ 全体の集合を $D$ とおく。以下の解答欄を埋めよ。

(1)$\alpha=0$ のとき、$D$ は複素数平面上で原点を中心とする半径 $\fbox{ア}$ の円の周上および内部になる。

次に $|\alpha|>0$ の場合を考える。以下、$\displaystyle \arg \alpha=\frac{6}{11}\pi$ とする。

(2) $|\alpha|=1$ のとき、$D$ は複素数平面上で原点を通る直線となり、偏角が $\displaystyle \frac{\fbox{イ}}{\fbox{ウエ}}\pi,\ \frac{\fbox{オカ}}{\fbox{キク}}\pi$ であるような複素数を全て含む。ただし $0\leq \displaystyle \frac{\fbox{イ}}{\fbox{ウエ}}\pi < \frac{\fbox{オカ}}{\fbox{キク}}\pi<2\pi$ とする。

(3) $0<|\alpha|<1$ の場合を考えよう。原点を中心として $z$ を反時計回りに $\displaystyle -\frac{\fbox{イ}}{\fbox{ウエ}}\pi$ だけ回転させた複素数を $w$ とおく(ただし $z=0$ のときは $w=0$ とする)。$z$ が $|z- \alpha\bar{z}|\leq1-|\alpha|^2$ を満たして動くときに $w$ が動く領域について考察することで、$D$ に対応する複素数平面上の図形が明らかになる。特に $|\alpha|=0.4$ のとき、$D$ の面積は $\displaystyle\frac{\fbox{ケコ}}{\fbox{サシ}}\pi$ である。

解答形式

解答欄ア〜シには、それぞれ0から9までの数字が1つ入る。同じカタカナの解答欄には同じ数字が入る。

(1)の答えとして、文字「ア」を半角で1行目に入力せよ。

(2)の答えとして、文字列「イウエオカキク」を半角で2行目に入力せよ。

(3)の答えとして、文字列「ケコサシ」を半角で3行目に入力せよ。

なお、分数はできるだけ約分された形となるように答えること。


問題

半径 $1000$ の円の形をした平坦な地形の島がある。この島を訪れたトレジャーハンターのアリスは、この島のある $1$ 点 $\mathrm{T}$ の真下に宝が埋まっていることは知っているが、$\mathrm{T}$ の位置は知らない。アリスは、自分のいる地点と $\mathrm{T}$ との距離を正確に測る探知機を使って $\mathrm{T}$ にたどり着こうとしている。

はじめ、アリスは島の中心点 $\mathrm{A_0}$ にいる。この後、アリスはターン制で行動を繰り返す。$n=1,2,\ldots$ に対し、$n-1$ ターン目の行動が終わった後のアリスの位置を $\mathrm{A_{n-1}}$ とする。$n$ ターン目でアリスは以下の行動をとる:

$n$ ターン目の行動:
アリスは、今いる地点 $\mathrm{A_{n-1}}$ からちょうど距離 $1$ だけ離れた点 $\mathrm{A_{n}}$ に移動する。その後、探知機を使って線分 $\mathrm{TA}_n$ の長さ $d_n$ を正確に測る。

さて、あるターンで $d_n=0$ となった時、アリスは今いる地点の真下を掘り起こして宝を見つける。$\mathrm{T}$ の位置にかかわらず、アリスがうまく行動すれば $N$ ターン目で確実に宝を見つけることができるような正の整数 $N$ の最小値を求めよ。

解答形式

半角数字のみで1行目に入力せよ。

9時間前

6

問題

各桁の数字が $3,7,5,6,4$ のいずれかであるような正の整数をエグい数と呼ぶことにする。$5$ 桁のエグい数であって、$5^5$ の倍数であるものを $1$ つ求めよ。

なお、本問では $10$ 進法を用いている。

解答形式

半角数字のみで1行目に入力せよ。
$10$ 進法で答えること。

F-ガンマ1/4

halphy 自動ジャッジ 難易度:
5年前

13

問題文

$n=0, 1,\cdots$ に対して

\begin{equation}
I_n=\int_0^1 \frac{x^n}{\sqrt{1-x^4}}dx
\end{equation}

と定める。この広義積分は収束することが知られている。

任意の $n=0,1,\cdots$ に対して
\begin{equation}
I_{n+\fbox{ア}}=\frac{n+\fbox{イ}}{n+\fbox{ウ}}I_n
\end{equation}が成り立つ(ただし $\fbox{ア}$ は $0$ でない)。これを利用すると

\begin{equation}
\prod_{n=1}^{\infty} \left[1-\frac{4}{(4n-1)^2}\right]=\frac{\fbox{エ}\;\pi^{\fbox{オ}}}{\alpha^{\fbox{カ}}}
\end{equation}が導かれる。ここで $\alpha$ は

\begin{equation}
\alpha=\int_0^{\infty} t^{-3/4}e^{-t}dt=\Gamma\left(\frac{1}{4}\right)
\end{equation}で定義される定数である(この広義積分は収束することが知られている)。

注意事項

以下の事実は証明なしに用いてよい。

  • 実数 $x>0$ に対して,広義積分
    \begin{equation}
    \Gamma(x) := \int_0^{\infty} t^{x-1}e^{-t}\;dt
    \end{equation}は収束する。
  • 実数 $x>0$ に対して
    \begin{equation}
    \Gamma(x+1)=x\Gamma(x)
    \end{equation}が成り立つ。
  • 実数 $x, y>0$ に対して
    \begin{equation}
    \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}=\int_0^1 t^{x-1}(1-t)^{y-1}\;dt
    \end{equation}が成り立つ。ただし,右辺の広義積分は収束することが知られている。
  • 実数 $0<x<1$ に対して
    \begin{equation}
    \Gamma(x)\Gamma(1-x)=\frac{\pi}{\sin\pi x}
    \end{equation}が成り立つ(相反公式)。

解答形式

$\fbox{ア}$ 〜 $\fbox{カ}$ には,半角数字 0 - 9 のいずれかが当てはまります。$\fbox{ア}$ 〜 $\fbox{カ}$ に当てはまるものを,改行区切りで入力してください。

求面積問題4

Kinmokusei 自動ジャッジ 難易度:
5年前

8

問題文

半径比が1:2の同心円と直角三角形です。
赤い線分の長さが12のとき、緑の三角形の面積を求めてください。

解答形式

半角数字で解答してください。


問題文

$n$ を $3$ 以上の整数とする。点 $\mathrm{O}$ を中心とする、半径 $1$ の円の形をしたピザがある。ピザの周上には、等間隔に点 $\mathrm{P}_1,\ldots,\mathrm{P}_n$ が並んでいる。

線分 $\mathrm{OP}_1$ 上に、線分 $\mathrm{OO'}$ の長さが $d$ となるような点 $\mathrm{O'}$ をとる。ここで $0< d < 1$ は定数である。ピザを線分 $\mathrm{O'P}_1,\ldots,\mathrm{O'P}_n$ によって分割し、分けられた $n$ 個のピザのうち線分 $\mathrm{P_1P_2,P_2P_3,\ldots, P_nP_1}$ を含む部分の面積を、それぞれ $S_1,\ldots,S_n$ とする。

$S_i$ の 平均はもちろん $\displaystyle \bar{S}= \frac{1}{n}\sum_{i=1}^{n}S_i=\frac{\pi}{n}$ である。では、$S_i$ の分散 $\displaystyle \sigma^2 = \frac{1}{n}\sum_{i=1}^{n}(S_i-\bar{S})^2$ はどうなるだろうか。以下の空欄を埋めよ。

(1)$\displaystyle \frac{\sigma ^2}{d^{\alpha}}$ が $d$ によらない定数となるような $\alpha$ の値は $\alpha=\fbox{ア}$ である。$n=12$ のとき、$\sigma^2$ を具体的に計算すると

$$
\sigma ^2 = \frac{\fbox{イ}-\sqrt{\fbox{ウ}}}{\fbox{エ}}d^{\fbox{ア}}
$$

である。

(2)極限 $\displaystyle \lim_{n\to\infty}n^{\beta}\sigma^2$ が $0$ でない有限の値に収束するような $\beta$ の値は $\beta=\fbox{オ}$ である。$\displaystyle d=\frac{1}{12\pi}$ のとき、その極限値は

$$
\lim_{n\to\infty}n^\fbox{オ}\sigma^2 = \frac{\fbox{カ}}{\fbox{キクケ}}
$$

である。

解答形式

ア〜カには、0から9までの数字が入る。
(1)の答えとして、文字列「アイウエ」を半角で1行目に入力せよ。
(2)の答えとして、文字列「オカキクケ」を半角で2行目に入力せよ。
なお、「ア」や「オ」には0や1が入ることもありうる。
また、分数はできるだけ約分された形で、根号の中身が最小となるように答えよ。
3行目以降に改行して回答すると、不正解となるので注意せよ。

求角問題5

Kinmokusei 自動ジャッジ 難易度:
4年前

9

問題文

図のように正六角形・扇形・その接線があります。Xで示した角の大きさを求めてください。

解答形式

0以上360未満の半角数字で解答してください。
※単位(°や度など)をつけず、度数法で解答。

5年前

10

問題文

$xy$ 平面上に原点を中心とする単位円 $C$ が存在する。$C$ 上の点 ${\rm A,B}$ は第一象限に存在し,それぞれ $x$ 座標が $\cfrac{1}{4}, \cfrac{3}{4}$ である。また、楕円$D$が存在し、その式は
$$
\frac{x^2}{p}+\frac{y^2}{q} = 1~~~~(p>q>0)
$$
と表される。

ある直線が円 $C$ 上の弧 ${\rm AB}$ のうち短い方(両端を含む)と接していて,なおかつ楕円 $D$ とも接している。この2つの接点の距離が $1$ であるとき、$p$ の最大値を求めよ。
(追記:2020年6月29日1:25 問題の不備を修正いたしました。解答は変わりません。)

解答形式

解答は,自然数 $a,b$ を用いて
$$
a+\sqrt{b}
$$という形で表される(平方根は最も簡単な形にしてある)。解答欄には,一行目に $a$、2行目に $b$ の値を半角数字で入力せよ。

よじさんじ

masorata 自動ジャッジ 難易度:
5年前

13

問題文

実数$ a $ を $a=\sqrt[3]{1+\sqrt2} +\sqrt[3]{1-\sqrt2}$ で定める。以下の問いに答えよ。

⑴ $a^3+3a-2=0$ であることを示せ。また、$0<a<2$ を示せ。

⑵ $x$ について以下の恒等式が成り立つことを示せ。
$$
x^4+4x-3=(x^2+a)^2-2a\left(x-\frac{1}{a}\right)^2
$$

⑶ 4次方程式 $x^4+4x-3=0$ の実数解を $a$ を用いて表せ。

解答形式

⑶のみ解答せよ。解は2つ存在し、
$$
x= -\sqrt{\frac{ア}{イ}}\ \pm \ \sqrt{\sqrt{\frac{ウ}{エ}}-\frac{オ}{カ}}
$$

の形である。ア~カのそれぞれには1から9までの自然数または文字$a$が入る。
ア~カに当てはまる数字または文字を、順にすべて半角で入力せよ。
たとえばア=2、イ=7、ウ=3、エ=5、オ=8、カ=$a$ と解答する場合は、
「27358a」と入力せよ。

13月前

13

問題文

$1$ 以上 $20^{24}$ 以下の整数 $N$ であって、次の条件を満たすものはいくつあるか。

条件: 何度でも微分可能な実数値関数 $f$ であって、ある実数 $x$ に対して $f(x)\ne0$ であり、さらに任意の実数 $x$ に対して $$\frac{f(x)}{N}=f\left(\frac{x-1}{2}\right)+f\left(\frac{x+1}{2}\right)$$ を満たすようなものが存在する。

解答形式

条件を満たす $N$ の個数を、半角数字で1行目に入力せよ。
2行目以降に改行して回答すると、不正解となるので注意せよ。