平方境界・反転素数・合同整合

xxxxx119 自動ジャッジ 難易度: 数学 > 競技数学
2025年8月16日4:28 正解数: 0 / 解答数: 2 ギブアップ数: 0

問題文タイトル:平方境界・反転素数・合同整合

3桁の正の整数 n が次の条件を満たす:

  1. n + 1 は完全平方数である。
  2. n の十進表記を反転して得られる整数 r は素数である。
  3. |n − r| は 18 の倍数である。
  4. n は 13 の倍数である。

このような n を求めなさい。
(解答は整数を1つ、例:123

問題文を入力してください

解答形式

例)ひらがなで入力してください。


ヒント1

【ヒント1】
n+1 が平方数 → 候補の平方数は 100, 121, 144, ..., 1024。
3桁で n = k^2 − 1 の形になるものを列挙する。

【ヒント2】
条件4で n は 13 の倍数。
その候補の反転数 r が素数かどうかを調べる。

【ヒント3】
残った候補について |n − r| が 18 の倍数かを確認する。
条件を全て満たす n を一意に絞る。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています


タイトル:三条件で定まる点と最短距離条件(大学レベル)

平面上に、点 $A(0,0)$、点 $B(12,0)$、点 $C(4,9)$ がある。
点 $P(x,y)$ は次の条件を満たすものとする:

  1. 距離比 $\displaystyle \frac{AP}{BP}=\phi^3$(ただし $\displaystyle \phi=\frac{\sqrt{5}+1}{2}$)
  2. 角度条件 $\angle APC = 45^\circ$
  3. 直線 $BC$ からの距離が最小となる位置を選ぶ。

点 $P$ の座標を求めなさい。
(解答は「x, y」の順に小数第2位まで。例:1.23, 4.56
問題文
問題文を入力してください

解答形式

例)ひらがなで入力してください。

問題15

Youteru 自動ジャッジ 難易度:
14日前

12

※この問題は人力で解けることを想定していない可能性があります。

平安時代には次のルールがある。
・男性が3日連続女性の家に通ったらその女性と結婚が成立する。
・男性が3年(1095日)間一切女性の家に通わなかったらその女性と離婚が成立する。
1人の男性が同時に女性と結婚できる人数は最大X人であり、女性の家に通いはじめてからX人の女性と結婚するのに必要な日数の最小値はY日である。XとYの10進数における文字列の結合を解答しなさい。ただし、1人の男性が1日に通える女性の家は1つだけである。
(寿命や重婚に対する刑罰は考慮しないものとする)

問題12

Youteru 自動ジャッジ 難易度:
14日前

7

次のグラフにおいて、毎ターン1つの線分上を駒が移動するとき、初期位置を点Pとして、1024ターン後に駒が点Pに戻るとき、駒の移動のやり方としてあり得るものの総数を1007で割った余りを求めよ。

[F] Phi Puzzle

GaLLium31 自動ジャッジ 難易度:
6日前

19

問題文

平方因子を持たない正整数 $n$ であって,$\dfrac{\phi(n)}{\gcd(n,\phi(n))} = 18$ を満たすものの総和を解答してください.

hinu問題02

hinu 自動ジャッジ 難易度:
5年前

46

問題文

$a,b,c$ を実数とする。次の連立方程式を解け。

$$
a^2-4b-1=0\\
b^2-8c+28=0\\
c^2-6a+2=0\\
$$

解答形式

a,b,cを半角数字として(a,b,c)で解答してください。無理数などを使いたい場合はTeXコマンドを使用してください。

Sandwich+

baba 自動ジャッジ 難易度:
5年前

10

問題文

https://pororocca.com/problem/19/
こちらの問題の設定で,「裏裏裏裏裏表表表表表」というピザの塔ができるような調理は何通りあるか答えなさい.

解答形式

半角数字で入力してください.

円周率 3

hinu 自動ジャッジ 難易度:
5年前

76

問題文

$\pi$ と $\dfrac{355}{113}$ はどちらが大きいか。ただし必要があれば積分

$$
\int_0^1\frac{x^8(1-x)^8(25+816x^2)}{3164(1+x^2)}dx
$$

を計算せよ。

解答形式

piまたは 355/113 で解答してください。

Vo Sequence

halphy 自動ジャッジ 難易度:
5年前

14

問題文

「ボ」と「ー」からなる文字列のうち,以下の条件を満たすものをボー文字列と呼ぶことにします.


条件:長音記号「ー」が文字列の先頭にくることはなく,連続して現れない.


例えば,「ボボー」や「ボーボボ」はボー文字列ですが,「ーボー」や「ボボーー」はボー文字列ではありません.

ボー文字列に対して,次の操作を行うことを考えます.


操作:ボー文字列に対して,次のうちいずれか一方を行う.

  • (A)文字列のどこか1ヶ所に長音記号「ー」を付け加える.
  • (B)文字列の末尾に「ボ」を付け加える.

ただし,得られた文字列はボー文字列でなければならない.


1文字「ボ」から始めて,ボー文字列に対してくり返し操作を行い $n$ 文字からなるボー文字列が得られたとします.異なる操作の仕方の総数を $a_n$ とするとき,$a_{10}$ を求めなさい.

解答形式

半角数字で入力してください。

Sandwich

halphy 自動ジャッジ 難易度:
5年前

12

問題文

ピザが1枚ずつ乗った $N\;(\geq 2)$ 枚の皿が横一列に並んでいます.ピザにはがあり,表には具がのっていて,裏にはのっていません.はじめ,すべての皿のピザは表が上になっています.これらのピザに対して,次の操作Xを考えます.

操作X:

  1. 隣り合う2枚の皿に着目し,左側の皿に乗っているピザをひっくり返し,右側の皿の一番上に重ねる.ピザが複数枚乗っている場合は,ピザを重ねたまままるごとひっくり返す.
  2. 左側の皿を取り除き,皿どうしのすき間を詰める.

この操作Xを$\;N-1\;$回繰り返すと,1枚の皿にピザの塔ができます.操作Xの $N-1$ 回の繰り返しをピザの調理ということにします.ピザの塔を構成するピザを,上から順に$\;P_i\; (i=1,\cdots, N)\;$とし,$P_i$ が表を上に向けているとき「表」,裏を上に向けているとき「裏」と書くことにすると,ピザの塔は「裏裏裏表」のように表すことができます.

$N=6$とします.「裏裏裏裏表表」というピザの塔ができるような調理は何通りあるか答えなさい.

解答形式

半角数字で入力してください.

常に無理数か?

hinu 自動ジャッジ 難易度:
5年前

95

問題

(1) $a,b$ を整数でない正の有理数とする。 $a^b$ は常に無理数か。

(2) $a$ を整数でない正の有理数とする。 $a^a$ は常に無理数か。

(3) $a,b$ を正の無理数とする。 $a^b$ は常に無理数か。

(4) $a$ を正の無理数とする。 $a^a$ は常に無理数か。

解答方法

解答欄に改行区切りで O (オー)または X (エックス)を記述せよ。正解判定は各行に対して行われ、完答のみ正解となる。

hinu積分02

hinu 採点者ジャッジ 難易度:
5年前

1

問題

(1) 定積分

$$
\int_0^1 \frac{x\log x}{(x+1)^2}dx
$$

の値を求めよ。

(2) 関数列 ${f_n(x)}$ を

$$
f_{n+1}(x)=(x^x)^{f_n(x)},\quad f_1(x)=x^x
$$

で定める。定積分

$$
\int_0^1(x^x)^{{(x^x)}^{(x^x)\cdots}}dx:=\int_0^1\lim_{n\to \infty} f_n(x)\ dx
$$

の値を求めよ。ただしテトレーション $x^{{x^{x\cdots}}}$ は底 $x$ が $e^{-e}<x<e^{1/e}$ のとき収束することは証明せずに用いて良い。

備考

この問題の正解判定は出題者により手動で行われるため、判定までに時間がかかることがある。

Commutability

halphy ジャッジなし 難易度:
5年前

0

問題文

${\rm GL}(2,\mathbb{R})$ を $2\times 2$ 正則行列全体の集合とする.単位行列を $E$ とし,${\rm GL}(2,\mathbb{R})$ の部分集合 $S$ を

\begin{equation}
S=\{ A\in {\rm GL}(2,\mathbb{R})\mid \forall X\in {\rm GL}(2,\mathbb{R}), AX=XA\}
\end{equation}

で定めるとき

\begin{equation}
S=\{ rE \mid r\in \mathbb{R}, r\neq 0\}
\end{equation}

であることを証明せよ.