問題文
$n$ を自然数とする。置換 $\sigma\in \mathfrak{S}_n$ に対して,$\sigma$ の近道度 $m(\sigma)$ を次のように定義する。
- $\sigma$ を 互いに素な(共通元をもたない) 巡回置換の積に表したとき,各巡回置換の長さの積の逆数を $m(\sigma)$ とする。(太字部分は19:42追記)
例えば $\sigma=(1 4 2)(5 6 7)(3)\in \mathfrak{S}_7$ なら,$\sigma$ は長さ $3, 3, 1$ の巡回置換からなるから,$\sigma$ の近道度 $m(\sigma)$ は
$$
m(\sigma)=\frac{1}{3\cdot 3\cdot 1}=\frac{1}{9}
$$
である。自然数 $n$ に対して,${1,\cdots, n}$ の置換(これは $n!$ 通りある)の近道度の平均を
$$
f_n=\frac{1}{n!}\sum_{\sigma\in \mathfrak{S}_n} m(\sigma)
$$
とおく。
$$
f_1=1, \; f_2=\frac{\fbox{ア}}{\fbox{イ}}, \; f_4=\frac{\fbox{ウエオ}}{\fbox{カキク}}
$$
であり,
$$
\sum_{n=0}^{\infty} f_n=\fbox{X}
$$
である(級数が収束することは証明なしに認めてよい)。ただし $f_0=1$ と約束する。
※ $\mathfrak{S}_n$ は $n$ 次対称群を表す(19:03追記)。
解答形式
$\fbox{ア}$ 〜 $\fbox{ク}$ には 0 - 9
の数字が当てはまります。$\fbox{ X }$にはある実数が当てはまります。空欄のある分数はすべて既約です。
- 1行目 には $\fbox{ア}$ に当てはまる数を半角で入力してください。
- 2行目 には $\fbox{イ}$ に当てはまる数を半角で入力してください。
- 3行目 には $\fbox{ウエオ}$ に当てはまる数を半角で入力してください。
- 4行目 には $\fbox{カキク}$ に当てはまる数を半角で入力してください。
- 5行目 には $\fbox{ X }$ に当てはまる数を入力します。答えを $10$ 進小数で表し,小数第2位を四捨五入して小数第1位まで求めてください。例えば,$9.876\cdots $ が答えになる場合は
9.9
と解答してください。
ヒント
- $f_0,\cdots, f_{n-1}$ を使って $f_n$ を表すことができます。
- $f_n$ の母関数を $f(t)=\displaystyle{\sum_{n=0}^{\infty}} f_nt^n$ とおくと,$f(t)$ はとある微分方程式を満たします。