[E] お好みの湯加減

masorata 自動ジャッジ 難易度: 数学 > 高校数学
2020年12月5日18:00 正解数: 4 / 解答数: 5 (正答率: 80%) ギブアップ不可
数列 まそらた杯
この問題はコンテスト「第2回まそらた杯」の問題です。

全 5 件

回答日時 問題 解答者 結果
2025年9月30日19:06 [E] お好みの湯加減 Angel_Chase
正解
2024年11月18日20:37 [E] お好みの湯加減 katsuo_temple
正解
2020年12月5日19:47 [E] お好みの湯加減 ofukufukufuku
不正解 (1/2)
2020年12月5日18:57 [E] お好みの湯加減 nesya
正解
2020年12月5日18:55 [E] お好みの湯加減 tkg06269476
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

[F] 歪んだバランス

masorata 自動ジャッジ 難易度:
4年前

13

問題文

相異なる正の実数 $a,b,c$ が $ab^2(1-b)=bc^2(1-c)=ca^2(1-a)$ を満たして動くとき、$(1-a)(1-b)(1-c)$ の最大値は

$$
\displaystyle \frac{\fbox{アイウ}+\fbox{エオ}\sqrt{\fbox{カ}}}{\fbox{キクケ}}
$$

である。

解答形式

ア〜ケには、0から9までの数字、または-(マイナス)が入る。文字列「アイウエオカキクケ」を全て半角で1行目に入力せよ。ただし、それ以上約分できない形で、かつ根号の中身が最小になるように答えよ。

4年前

18

問題文

正の実数に対して定義され正の実数値をとる関数 $f$ が、任意の正の実数 $x,y$ に対して

$$
f\left(\frac{x+y+1}{xy}\right)=\frac{f(x)f(y)}{x+y+1}
$$

を満たすとき

$$
f\left(\frac{11}{21}\right) = \frac{\fbox{アイウエ}}{\fbox{オカキ}}
$$

である。

解答形式

ア〜キには、0から9までの数字が入る。
文字列「アイウエオカキ」を半角で1行目に入力せよ。
ただし、それ以上約分できない形で答えよ。

[C]線形代数のよくある問題

fusshi 自動ジャッジ 難易度:
5年前

3

問題文

行列$A$を次で定義する。
$$
A=
\begin{pmatrix}
6& -3 & -7 & 0 & 0 & 0\\
-1 & 2 & 1 & 0 & 0 & 0\\
5& -3 & -6 & 0 & 0 & 0\\
0& 0 & 0 & 1 & 2 & 1\\
0& 0 & 0 & -1 & 4 & 1\\
0& 0 & 0 & 2 & -4 & 0\\
\end{pmatrix}
$$
このとき次の実線形空間の次元を求めよ。
$$
V=\{X\in M_{6}(\mathbb{R})\mid AX=XA\}
$$
ただし、$M_{6}(\mathbb{R})$とは6行6列の実正方行列全体の集合である。

解答形式

半角数字で答えよ。

300G

MrKOTAKE 自動ジャッジ 難易度:
14月前

4

問題文

三角形$ABC$があり,また点$C$を通る点$B$で$AB$に接する円$O$がある.円$O$上でありかつ
三角形$ABC$の内部に$BD=CD$となる点$D$をとり$AC$と円$O$の交点のうち$C$でないものを$E$とおくと
$AB=15,BC=10,DE=16$であった.このとき$AC$の長さの$2$乗は互いに素な正整数$a,b$によって$\frac{a}{b} $と表されるので$a+b$の値を解答してください.
ただし点$A,C,E$は$ACE$の順に一直線上に並んでいるものとする.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

再掲No.2

MrKOTAKE 自動ジャッジ 難易度:
4月前

3

問題文

三角形 $ABC$ の線分 $BC$ の中点を $M$ とし,線分 $AB$ 上に点 $P$ をおくと $AP=2,AM=5,CP=4, \angle ACP= \angle BPM$ であったので,線分 $BC$ の長さの $2$ 乗を解答せよ.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

再掲No.1

MrKOTAKE 自動ジャッジ 難易度:
4月前

3

問題文

三角形 $ABC$ があり内部に点 $D$ をとり,直線 $AD$ と $BC$ の交点を $E$ とすると $\angle ABD=\angle BCD,AD=DE=3,BE=2,CE=9$ であった.このとき $AC$ の長さの $2$ 乗を解答せよ.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.


問題文

以下の文がそれぞれ正しくなるように、空欄に $0$ から $9$ までの数字を埋めよ。ただし、同じ文字の空欄には同じ文字が入る。

(1)数列 $\fbox{ア}, \fbox{イ}, \fbox{ウ}, \fbox{エ},\fbox{オ}$ には、
$0$ が $\fbox{ア}$ 回、$1$ が $\fbox{イ}$ 回、$2$ が $\fbox{ウ}$ 回、$3$ が $\fbox{エ}$ 回、$4$ が $\fbox{オ}$ 回、それぞれ現れる。

(2)数列 $\fbox{カ}, \fbox{キ}, \fbox{ク}, \fbox{ケ}, \fbox{コ}, \fbox{サ}, \fbox{シ}, \fbox{ス}, \fbox{セ}, \fbox{ソ}$ には、
$0$ が $\fbox{カ}$ 回、$1$ が $\fbox{キ}$ 回、$2$ が $\fbox{ク}$ 回、$3$ が $\fbox{ケ}$ 回、$4$ が $\fbox{コ}$ 回、
$5$ が $\fbox{サ}$ 回、$6$ が $\fbox{シ}$ 回、$7$ が $\fbox{ス}$ 回、$8$ が $\fbox{セ}$ 回、$9$ が $\fbox{ソ}$ 回、それぞれ現れる。

解答形式

ア〜ソには、0から9までの数字が入る。
(1)の答えとして、文字列「アイウエオ」を半角で1行目に入力せよ。
(2)の答えとして、文字列「カキクケコサシスセソ」を半角で2行目に入力せよ。

せいすう

k4rc 自動ジャッジ 難易度:
25日前

16

問題文

$4999$ 以下の素数の組 $(p,q,r,s)$ が以下の式を満たしているとき,積 $pqrs$ が取りうる値の総和を解答してください.
$$ pqr+pqs-p^2 = q^2+2 $$

解答形式

正の整数を半角で解答.

求長問題20

Kinmokusei 自動ジャッジ 難易度:
4年前

4

問題文

半円と平行四辺形が図のように配置されています。赤い三角形の面積が3のとき、青い線分の長さを求めてください。

※平行四辺形の一辺と半円は接する。

解答形式

$$x=\fbox{ア}\sqrt{\fbox{イウ}-\fbox エ\sqrt{\fbox オ}}$$と表せるので、文字列 アイウエオ を解答してください。ただし、$\fbox ア~\fbox オ$には0以上9以下の整数が入ります。

21月前

4

問題文

三角形 $ABC$ において,$A,B,C$ から対辺に下ろした垂線の足を $D,E,F$ とし,三角形 $ABC$ の垂心を $H$ としたところ,$DE=9,DF=8,DH=7$ となりました.
このとき,$AH$ の長さは互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

中線と垂線

kusu394 自動ジャッジ 難易度:
13月前

7

問題文

$\angle ABC $ と $\angle BCA$ が鋭角であるような $\triangle ABC$ について,辺 $BC$ の中点を $M$ とします.また,$M$ から辺 $AB,AC$ におろした垂線の足をそれぞれ $P, Q$ とすると、線分 $AM, BQ, CP$ が一点で交わります.

$$ AB = 12, \ \ BC= 20 $$

のとき,$\triangle ABC$ の面積の二乗としてありうる値の総和を解答してください。

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

[A] Triple Matrix

masorata 自動ジャッジ 難易度:
20月前

16

問題文

正の整数 $a,b,c$ が

$$
\begin{pmatrix} 1 & 1 & 0\\ 0 & 1 & 0 \\ 0 & 0 & 1\end{pmatrix}^a
\begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 1 \\ 0 & 0 & 1\end{pmatrix}^b
\begin{pmatrix} 1 & 0 & 1\\ 0 & 1 & 0 \\ 0 & 0 & 1\end{pmatrix}^c
=\begin{pmatrix} 1 & 20 & 2024\\ 0 & 1 & 24 \\ 0 & 0 & 1\end{pmatrix}
$$

を満たすとき、$a+b+c$ の値を求めよ。

解答形式

半角数字で1行目に入力せよ。