公開日時: 2023年10月26日12:51 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
(1)$2024!$は何回$2$で割り切ることができるか答えよ。
(2)$[\sqrt{2024}]$、$[\sqrt[3]{2024}]$の値を求めよ。ただし、$[x]$は$x$を超えない最大の整数を表すものとする。
(3)$2024!$の約数の個数は$10^{91}$より大きいことを示せ。ただし、$1$から$2024$までの素数は$306$個である。
(1) ~~~
(2) ~~~
の形でお願いします。問題番号と解答、一つの小問の解答と解答の間は半角スペースを開けてください。
解答は数字のみお書きください。
公開日時: 2023年1月7日22:18 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
${}$ 西暦2023年問題第7弾、今年最後の西暦問題です。ラストを飾るのは循環小数です。循環小数というテーマ自体が奥深いわけですが、その一端を味わえるようにしました。どうぞ最後までお付き合いください。
${}$ いつもの図形問題ですが、明日1月8日(日)は出題をお休みして、翌週1月15日(日)から再開する予定です。お待たせしていますが、またどうぞよろしくお願いします。
${}$ 解答は、$N$の値をそのまま入力してください。「$N=$」の記載は不要です。
(例) $N=107$ → $\color{blue}{107}$
公開日時: 2023年1月6日23:06 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ
${}$ 西暦2023年問題第6弾です。桁数を少し大きくした割り算と余りの問題をこさえてみました。面倒な計算をできるだけ避ける工夫を探してみてください。(完全には避けられないので、電卓や電卓機能サービスを用意しておいた方がいいかもしれません)
${}$ 解答は、この8桁の自然数をそのまま入力してください。
(例) $\square\square\square\square$に入るのが$0106$で8桁の自然数が$20010623$となるとき
→ $\color{blue}{20010623}$
公開日時: 2022年9月7日22:25 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$\frac{7p+q}{7q+p}$が整数となるような異なる素数$(p,q)$の組み合わせを全て求めよ。
$p$と$q$を横につなげて解答してください。解答が2つ以上ある場合は$p$の小さい順に改行して記入してください。$p$が等しい解答が2つ以上あった場合、$q$の小さい順に改行して記入してください。
解答例)$(p,q)=(2,11),(7,17),(7,29)$のとき、以下のように解答します。
211
717
729
公開日時: 2022年5月20日7:24 / ジャンル: 数学 / カテゴリ: 大学数学 / 難易度: / ジャッジ形式: 採点者ジャッジ
$a_{1} = 3$ , $a_{n+1} = \frac{a_{n}(a_{n}+1)}{2}$
とする($n$は自然数)。
また、$2$ 以上の自然数を $p$ とし、$a_{n}$を $3^{p}$ で割った時の余りを $R_{n}^{p}$ とする。
このとき、数列 {$R_{n}^{p}$} は
「周期の長さが $2×3^{p-2}$ 」であり、
かつ「 $0$ 以上 $3^{p}$ 未満の $3$ の倍数のうち $9$ の倍数ではない数」
をすべて巡回することを示せ。
論述形式です。途中までの投稿もOKです。$p$ の値が小さければ、試してみると成立していることが分かります。
公開日時: 2022年1月8日23:28 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ
${}$ 年始集中企画として西暦2022年問題をお送りしてきました。今回が第7弾、最終回です。後半はとかく大きめの数を扱うことが多く、ご多分に漏れず当問もそうなっています。どうぞ最後までお楽しみください。
${}$ いつもの図形問題ですが、明日1月9日(日)は出題をお休みして、翌週1月16日(日)から再開する予定です。お待たせしていますが、またどうぞよろしくお願いします。
${}$ 解答は条件を満たす自然数の個数をそのまま入力してください。単位は不要です。
(例) $107$ 個 → $\color{blue}{107}$