$[\sqrt[11111]{2024!}]$を求めよ。ただし、$\log_{10}2=0.3010$、$\log_{10}3=0.4771$とする。
数字のみを記入してください。
$2^n$での近似です。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$\angle B$ が鋭角である三角形 $ABC$ がある.いま,$\angle A$ の二等分線と辺 $BC$ との交点を $D$ とし,$D$ から辺 $AB$ に下ろした垂線の足を $H$ とする.$AH = 1944, HB = 2, AC = 2023$ がそれぞれ成り立つとき,辺 $BC$ の長さを求めよ.
半角数字で解答してください.
直方体 $ABCD-EFGH$があり, $AB=\sqrt{2},AD=2023\sqrt{2},AE=2024\sqrt{2}$ です. 三角形 $BDE$ の面積を求めてください.
図の条件のもとで、緑の正三角形の面積を求めてください。 ※ hexagram : 六芒星
半角数字で回答してください。
$m^2+2024=n^2$となる自然数の組$(m,n)$をすべて求めよ。
(m,n) という形で解答してください。 答えが複数ある場合は改行区切りで入力してください。 また、mが小さい順に解答をしてください。
(1)$2024!$は何回$2$で割り切ることができるか答えよ。 (2)$[\sqrt{2024}]$、$[\sqrt[3]{2024}]$の値を求めよ。ただし、$[x]$は$x$を超えない最大の整数を表すものとする。
(3)$2024!$の約数の個数は$10^{91}$より大きいことを示せ。ただし、$1$から$2024$までの素数は$306$個である。
(1) ~~~ (2) ~~~ の形でお願いします。問題番号と解答、一つの小問の解答と解答の間は半角スペースを開けてください。 解答は数字のみお書きください。
$2^{n}+6n+1$が平方数となるような自然数$n$の値をすべて求めよ.
半角数字で解答してください.解が複数ある場合は,小さいものから順に,1行に1つずつ書いてください.
$$ \sum_{k=1}^{10} {}_{10}{\mathrm{C}}_{k}\cdot9^k\cdot k $$
半角数字で入力してください。
図の条件の下で、$AB^2+BC^2+CD^2+DA^2$ の値を求めてください。
半角数字で解答してください。
【補助線主体の図形問題 #109】 今週の図形問題です。今回はシンプルな見た目だけに、補助線が大いに活躍します。その分というわけではありませんが、計算は重めです。ぜひじっくりとお楽しみください。
${ \def\cm{\thinspace \mathrm{cm}} }$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。 (例) $12\cm$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$ 入力を一意に定めるための処置です。 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
図の条件の下で、線分 $CG$ の長さを求めてください。 ※図中の各線分の長さの比は正確とは限りません。
互いに素な正整数 $a,b$ によって $CG=\dfrac{a}{b}$ と表せるので、$a+b$ の値を半角数字で解答してください。
図の条件の下で、$x$ で示した角の大きさを求めてください。 ただし、外側の三角形は鋭角三角形であるとします。
$x=a$ 度です $(0<a<30)$ 。$a$ の値を半角数字で解答してください。
図の条件の下で、青で示した角の大きさ $x$ を求めてください。
$x=a$ 度($0\leq a\lt 180$)です。整数 $a$ の値を半角数字で解答してください。