2024②

seven_sevens 自動ジャッジ 難易度: 数学 > 高校数学
2023年10月26日14:38 正解数: 4 / 解答数: 6 (正答率: 66.7%) ギブアップ数: 0
整数 整数問題 指数対数

全 6 件

回答日時 問題 解答者 結果
2023年11月24日1:41 2024② mahiro
正解
2023年11月23日18:29 2024② mochimochi
正解
2023年11月23日18:29 2024② mochimochi
不正解 (0/1)
2023年11月7日20:19 2024② natsuneko
正解
2023年11月3日15:05 2024② rankturnip
不正解 (0/1)
2023年10月26日15:20 2024② naoperc
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています


問題文

$\angle B$ が鋭角である三角形 $ABC$ がある.いま,$\angle A$ の二等分線と辺 $BC$ との交点を $D$ とし,$D$ から辺 $AB$ に下ろした垂線の足を $H$ とする.$AH = 1944, HB = 2, AC = 2023$ がそれぞれ成り立つとき,辺 $BC$ の長さを求めよ.

解答形式

半角数字で解答してください.

BMC002-E

MARTH 自動ジャッジ 難易度:
18日前

9

直方体 $ABCD-EFGH$があり, $AB=\sqrt{2},AD=2023\sqrt{2},AE=2024\sqrt{2}$ です. 三角形 $BDE$ の面積を求めてください.

求面積問題29

Kinmokusei 自動ジャッジ 難易度:
24月前

4

問題文

図の条件のもとで、緑の正三角形の面積を求めてください。

※ hexagram : 六芒星

解答形式

半角数字で回答してください。

2024⑤

seven_sevens 自動ジャッジ 難易度:
21日前

3

問題文

$m^2+2024=n^2$となる自然数の組$(m,n)$をすべて求めよ。

解答形式

(m,n)
という形で解答してください。
答えが複数ある場合は改行区切りで入力してください。
また、mが小さい順に解答をしてください。

2024①

seven_sevens 自動ジャッジ 難易度:
35日前

9

問題文

(1)$2024!$は何回$2$で割り切ることができるか答えよ。
(2)$[\sqrt{2024}]$、$[\sqrt[3]{2024}]$の値を求めよ。ただし、$[x]$は$x$を超えない最大の整数を表すものとする。

チャレンジ課題

(3)$2024!$の約数の個数は$10^{91}$より大きいことを示せ。ただし、$1$から$2024$までの素数は$306$個である。

解答形式

(1) ~~~
(2) ~~~
の形でお願いします。問題番号と解答、一つの小問の解答と解答の間は半角スペースを開けてください。
解答は数字のみお書きください。

整数問題2/6

miq 自動ジャッジ 難易度:
9月前

12

問題文

$2^{n}+6n+1$が平方数となるような自然数$n$の値をすべて求めよ.

解答形式

半角数字で解答してください.解が複数ある場合は,小さいものから順に,1行に1つずつ書いてください.

Combination

Gauss 自動ジャッジ 難易度:
23月前

12

問題文

$$
\sum_{k=1}^{10} {}_{10}{\mathrm{C}}_{k}\cdot9^k\cdot k
$$

解答形式

半角数字で入力してください。

12月前

8

問題文

図の条件の下で、$AB^2+BC^2+CD^2+DA^2$ の値を求めてください。

解答形式

半角数字で解答してください。

4月前

14

【補助線主体の図形問題 #109】
 今週の図形問題です。今回はシンプルな見た目だけに、補助線が大いに活躍します。その分というわけではありませんが、計算は重めです。ぜひじっくりとお楽しみください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

16月前

5

問題文

図の条件の下で、線分 $CG$ の長さを求めてください。
※図中の各線分の長さの比は正確とは限りません。

解答形式

互いに素な正整数 $a,b$ によって $CG=\dfrac{a}{b}$ と表せるので、$a+b$ の値を半角数字で解答してください。

16月前

6

問題文

図の条件の下で、$x$ で示した角の大きさを求めてください。
ただし、外側の三角形は鋭角三角形であるとします。

解答形式

$x=a$ 度です $(0<a<30)$ 。$a$ の値を半角数字で解答してください。

12月前

15

問題文

図の条件の下で、青で示した角の大きさ $x$ を求めてください。

解答形式

$x=a$ 度($0\leq a\lt 180$)です。整数 $a$ の値を半角数字で解答してください。