数学の問題一覧

カテゴリ
以上
以下
18月前

6

問題文

正方形2つを図のように配置しました。青で示した角の大きさを求めてください。

解答形式

$x=a$ 度です。$0\leq a\lt 180$ を満たす整数 $a$ を半角数字で解答してください。

2年前

6

【補助線主体の図形問題 #012】
 日本各地に緊急事態宣言やら蔓延防止等重点措置やら発出されてピリピリしている昨今ではありますが、ここはひとつ心穏やかに図形問題と向き合うのはいかがでしょうか。今回も補助線次第で暗算処理可能なように調整してあります。ひらめきの快感をぜひ味わってください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\def\mytri#1{\triangle \mathrm{#1}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 全体の方針をぼんやりと
  2. ヒント1の内容を少しだけ具体的に
  3. ヒント2の内容をもう少し具体的に
  4. ヒント3の内容を具体的に

問題文

4桁の自然数Nの千の位、百の位、十の位、一の位の数字をそれぞれa,b,c,dとする。次の条件を満たすNは何通りあるか、それぞれ答えなさい。
問1 a<b<c<d 問2 a>b≧c,5<d 問3 a>b,b<c<d

解答形式

下記のように解答お願いします。問題番号と〜にあたる部分には半角スペース1個分空けてください。
問1 〜通り
問2 〜通り
問3 〜通り

うぉり~っす

masorata 自動ジャッジ 難易度:
3年前

6

問題文

数列 $ \{ a_n \} $ $(n=1,2\dots)$ を、
$$
a_1=1,\ a_{n+1} = \sum_{k=1}^{n}\frac{8k-3}{4n^2-1}a_k\ (n = 1,2,...)
$$

で定める。$\displaystyle \lim_{n\to\infty}{a_{n}}$ を求めよ。

解答形式

求める極限値は、ある有理数 $q$ を用いて $q \pi$ と表せる。この $q$ を小数で表し、小数第4位を四捨五入したものを入力せよ。すべて半角数字で入力すること。なお、もし $3/2=1.5$のようになる場合は、$1.500$ と入力せよ。

2曲線で囲まれる部分の面積

zyogamaya 自動ジャッジ 難易度:
2年前

6

問題文

2曲線
$
\begin{cases}
y=2x^3+10x^2+12x+7 \newline
y=x^2+5x+13
\end{cases}
$
で囲まれる部分の面積$S$を求めよ。

解答形式

答えは
$\displaystyle\frac{[abc]}{[de]}$
という形になります。($a,b,c,d,e$は1桁の自然数)
センター、共通テスト方式で答えてください。
例:
$S=\displaystyle\frac{765}{13}$のときは「76513」と入力する。

正方形と2つの円

tb_lb 自動ジャッジ 難易度:
2年前

6

【補助線主体の図形問題 #015】
 今回は円がらみの求長問題にしてみました。地道なド根性解法もありますが、補助線次第では暗算も可能なように仕込んであります。お好みの解法・手法で挑戦してみてください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\def\mytri#1{\triangle \mathrm{#1}}
\def\myang#1{\angle \mathrm{#1}}
\renewcommand\deg{{}^{\circ}}
\def\myarc#1#2{\stackrel{\style{transform:matrix(#1,0,0,1.5,0,2)}{\frown}}{\mathrm{#2}}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 前半の方針をぼんやりと
  2. ヒント1の続き
  3. 後半の方針をぼんやりと
  4. ヒント3の続き

三角形と4つの傍接円

tb_lb 自動ジャッジ 難易度:
5月前

6

【補助線主体の図形問題 #093】
 今週の図形問題は傍接円がテーマで、傍接円を4つも登場させてしまいました。補助線を頼りに傍接円だらけの図形をねじ伏せてください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

求面積問題13

Kinmokusei 自動ジャッジ 難易度:
2年前

5

問題文

図のように正方形・半円が配置されています。正方形の一辺の長さが2であるとき、青で示した部分の面積(の合計)を求めてください。

解答形式

半角数字で解答してください。

求長問題16

Kinmokusei 自動ジャッジ 難易度:
2年前

5

問題文

2021.3.21 22:28 問題タイトルを修正しました。(解答に影響はありません)
正三角形の内接円と外接円があります。図のように線分の長さが与えられたとき、正三角形の一辺の長さを求めてください。

解答形式

答えは$\fbox ア\sqrt{\fbox イ}$となります。文字列 アイ を解答してください。
ただし、$\fbox ア,\fbox イ$には一桁の自然数が入ります。また、根号の中身が平方数の倍数にならないように解答してください。

平行四辺形の面積

tb_lb 自動ジャッジ 難易度:
9月前

5

【補助線主体の図形問題 #083】
 今週の図形問題です。暗算では処しがたい計算が待ち受けていますので、ぜひ紙&ペンをお供に挑戦してみてください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

2年前

5

問題文

$f:{\mathbb R} \rightarrow {\mathbb R}$ は微分可能で、任意の $x,y \in {\mathbb R}$ に対して

$$
f(x+y)+f(x)f(y)=f(xy+1)
$$

を満たすとする。以下の空欄を埋めよ。

⑴ $f(0)=\fbox{アイ}$ または $f(0)=\fbox{ウ}$ が成り立つ。また、$f(0)=\fbox{アイ}$ のとき $f(1)=\fbox{エ}$ で、このとき $x \in {\mathbb R}$ を固定するごとに極限

$$
f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}
$$

を考えるとロピタルの定理の仮定をすべて満たしていることがわかる。よって同定理を用いて $f$ が満たす微分方程式を導くことができる。

⑵ $f$ が満たす微分方程式を解くことで、$f$ をすべて決定できる。特に $f(23)$ がとり得る値は $\fbox{オ}$ 通りあり、それらの値の総和は $\fbox{カキク}$ である。

解答形式

ア〜クには、0から9までの数字または「-」(マイナス)が入る。
⑴の答えとして、文字列「アイウエ」をすべて半角で1行目に入力せよ。
⑵の答えとして、文字列「オカキク」をすべて半角で2行目に入力せよ。

2年前

5

【補助線主体の図形問題 #010】
 今年2021年の1月末から投稿を初めて10問目となりました。キリ番記念(?)に少しばかり手ごたえのある問題をお送りすることにします。うまい補助線を引けるだけでは不十分で、補助線を活かすための発想も必要です。じっくり腰を据えて補助線を戯れてみてください!

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\renewcommand\deg{{}^{\circ}}
\def\jpara{\mathrel{\unicode{x2AFD}}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. まずすべきことと全体の方針
  2. ヒント1の続き
  3. ヒント2をやや具体的に
  4. ヒント2・3の続き