数学の問題一覧

カテゴリ
以上
以下

Kinmokusei

公開日時: 2021年5月16日2:37 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

図のような半円2つと正方形を組み合わせた図形があります。2つの半円弧に引いた接線が直交しているとき、図中の青で示した角の角度を求めてください。

解答形式

度数法で単位を付けずに0以上180未満の数を半角で解答してください。
例:$x=120°$であれば、120 と解答

Kinmokusei

公開日時: 2021年1月23日20:12 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

図のように3つの正方形が配置されています。3つの線分の長さが図のように与えられたとき、緑の六角形の面積を求めてください。

解答形式

面積は、
$$
\fbox{アイ}+\frac{\fbox{ウエ}\sqrt{\fbox{オカ}}}{\fbox{キ}}
$$
となります。$\fbox ア~\fbox キ$には0以上9以下の整数が入ります。文字列「アイウエオカキ」を解答してください(「」は不要)。ただし、根号の中身や分数は最も簡単な形にしてください。

例$$
面積S=17+\frac{22\sqrt{52}}{8}\rightarrow 17+\frac{11\sqrt{13}}{2}\rightarrow 1711132 と解答
$$

Kinmokusei

公開日時: 2022年3月20日13:47 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

図の条件の下で、水色で示した三角形の面積を求めてください。
赤で示した三角形の面積は $24$ です。

解答形式

半角数字で解答してください。

tb_lb

公開日時: 2021年9月19日23:22 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 長さ

【補助線主体の図形問題 #029】
 今回は円がらみの求長問題を用意しました。隠されたある性質を補助線であぶり出しながらお楽しみください。若干面倒な計算が待ち受けているので、簡単な計算用紙があるといいかもしれません。

※2021年9月11日より難易度評価を見直して、総じて★+1しました。この問題の現難易度評価★3.0は、旧評価の★2.0にあたります。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

tb_lb

公開日時: 2023年4月9日22:16 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 長さ

【補助線主体の図形問題 #093】
 今週の図形問題は傍接円がテーマで、傍接円を4つも登場させてしまいました。補助線を頼りに傍接円だらけの図形をねじ伏せてください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

Kinmokusei

公開日時: 2020年11月21日19:25 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

図のように正方形・半円が配置されています。正方形の一辺の長さが2であるとき、青で示した部分の面積(の合計)を求めてください。

解答形式

半角数字で解答してください。

soka

公開日時: 2024年4月9日21:59 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題

$1〜100$の数字が書かれた$100$面のさいころを$3$回投げて出た目を順に$x,y,z$とし、$a=x+y、b=y+z、c=z+x$と定めます。このとき、不等式$$\frac{1}{2} <\frac{ab+bc+ca}{a^2+b^2+c^2} $$が成り立つ確率を求めてください。

解答形式

互いに素な非負整数$n,m$を用いて、$\frac{n}{m}$と表されるので、$n+m$の値を半角数字で入力してください。

natsuneko

公開日時: 2024年1月24日8:08 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

組み合わせ

問題文

各文字が < か > であるような長さ $13$ の文字列 $S$ の内, 次の条件を満たす整数列 $a_1, a_2, \cdots a_{14}$ が一意に存在するようなものはいくつありますか?
・$S$ の $i$ 文字目が < ならば, $a_{i+1} = a_i + 1$
・$S$ の $i$ 文字目が > ならば, $a_{i+1} = a_i - 1$
・$1 \leq a_k \leq4 \ (k = 1, 2, \cdots, 14)$

解答形式

半角数字で解答して下さい.

tb_lb

公開日時: 2022年2月13日22:16 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 長さ

【補助線主体の図形問題 #046】
 バレンタイン直前なのを意識してこんな図形問題を用意してみました。イベント便乗の色物問題ですが、方針次第では暗算で処理できるのはいつも通りです。補助線と共に存分にお楽しみください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

masorata

公開日時: 2024年1月2日0:40 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

数列

問題文

数列 $\{a_n \}$ $(n=1,2,...)$ が漸化式:

$$
a_1=2, \ \displaystyle a_{n+1}=\frac{5a_n+3\sqrt{a_n^2-4\ }}{4}\ \ \ (n=1,2,\ldots)
$$

を満たすとき、$\displaystyle a_7=\frac{\fbox{アイウエ}}{\fbox{オカ}}$ である。

解答形式

ア〜カには、0から9までの数字が入る。
文字列「アイウエオカ」をすべて半角で1行目に入力せよ。
ただし、それ以上約分できない形で答えよ。

tb_lb

公開日時: 2023年6月25日22:23 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 長さ

【補助線主体の図形問題 #104】
 今週の図形問題です。2円と共通外接線というありがちな構図ですが、そこに長方形まで参上してしまいました。どうぞうまいこと処理してやってください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

tb_lb

公開日時: 2022年2月6日22:43 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 面積

【補助線主体の図形問題 #045】
 今週は正多角形がらみの求積問題を用意しました。扱いやすい図形なので解法も多くありそうです。いつも通り暗算解法も仕込んであります。お好きな解法でお楽しみください!

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。