求面積問題

Kinmokusei 自動ジャッジ 難易度: 数学 > 中学数学
2020年6月13日11:03 正解数: 15 / 解答数: 20 (正答率: 75%) ギブアップ不可

全 20 件

回答日時 問題 解答者 結果
2025年11月29日23:09 求面積問題 Patience
正解
2025年1月6日15:01 求面積問題 wasab1
正解
2023年11月12日16:30 求面積問題 natsuneko
正解
2023年11月12日15:26 求面積問題 nmoon
正解
2023年9月5日20:15 求面積問題 ゲスト
正解
2023年5月2日11:12 求面積問題 tima_C
正解
2022年11月17日9:58 求面積問題 ゲスト
正解
2022年10月19日10:47 求面積問題 nzm
不正解
2021年9月20日1:05 求面積問題 ゲスト
正解
2021年9月20日1:04 求面積問題 ゲスト
不正解
2020年12月21日15:12 求面積問題 minaduki_foo
正解
2020年6月17日14:48 求面積問題 niryuu
不正解
2020年6月17日12:10 求面積問題 shakayami
正解
2020年6月17日12:09 求面積問題 shakayami
不正解
2020年6月14日11:11 求面積問題 ofukufukufuku
正解
2020年6月14日9:02 求面積問題 BUTATA
正解
2020年6月13日18:21 求面積問題 baba
正解
2020年6月13日16:51 求面積問題 ofukufukufuku
不正解
2020年6月13日14:53 求面積問題 okapin
正解
2020年6月13日12:56 求面積問題 mochimochi
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

求面積問題2

Kinmokusei 自動ジャッジ 難易度:
5年前

13

問題文

緑色の線分の長さは1です。
このとき、円の面積を求めてください。
図中の赤点はそれを含む線分の中点です。

解答形式

答えは(分数)×πの形になります。
分子を1行目に、分母を2行目に半角数字で入力してください。
ただし、既約分数の形で解答してください。
例: (10/3)π → 1行目に10、2行目に3

求角問題

Kinmokusei 自動ジャッジ 難易度:
5年前

15

問題文

同じ色の線分は同じ長さです。
∠Xの大きさを求めてください。
青と黄、赤と黄緑の線分が重なって一部見づらくなっています。m(__)m

解答形式

度数法で、0~360の数字を半角で入力してください。
例:∠X=30° → 30
「度」や"°"をつけずに回答してください。

求角問題2

Kinmokusei 自動ジャッジ 難易度:
5年前

30

問題文

半円2つが図のように配置されています。
赤い線分と青い線分は長さの比が1:2です。
このとき、Xの角度を求めてください。

解答形式

半角数字で入力してください。
「度」や「°」は付けないでください。
例:X=57° → 57

求面積問題4

Kinmokusei 自動ジャッジ 難易度:
5年前

8

問題文

半径比が1:2の同心円と直角三角形です。
赤い線分の長さが12のとき、緑の三角形の面積を求めてください。

解答形式

半角数字で解答してください。

求面積問題8

Kinmokusei 自動ジャッジ 難易度:
5年前

17

問題文

△ABCと点Pをとり、△ABP, △BCP, △CAPの重心をそれぞれ$G_1, G_2, G_3$とします。青で示した3つの三角形の面積の和が10のとき、$△G_1G_2G_3$(赤い三角形)の面積を求めてください。

解答形式

半角数字で解答してください。

求面積問題3

Kinmokusei 自動ジャッジ 難易度:
5年前

13

問題文

図中の青い線分の長さはすべて10,赤で示した角はすべて等しいです。
このとき、緑色部分(凹四角形)の面積を求めてください。
解答形式に注意!

解答形式

$答えはA\sqrt{B}の形になります。(A,Bは自然数)$
$A+Bを解答してください。$
$<注意>$
$根号の中が最小となるようにしてください。$
$半角数字で解答してください。$
$例 : green area=10\sqrt{8}=20\sqrt{2}→A=20,B=2→22 と解答$

求面積問題7

Kinmokusei 自動ジャッジ 難易度:
5年前

20

問題文

三角形の外側に3つの正方形を図のように作りました。橙・緑・紫の線分の長さを3辺の長さとする三角形(赤い三角形)の面積が57のとき、元の三角形(青い三角形)の面積を求めてください。

解答形式

半角数字で解答してください。

求面積問題15

Kinmokusei 自動ジャッジ 難易度:
4年前

12

問題文

緑色の五角形の面積を求めてください。
紫でしめした3つの角は等しく、赤同士、青同士の線分はそれぞれ等しい長さです。

解答形式

半角数字で解答してください。

求角問題4

Kinmokusei 自動ジャッジ 難易度:
5年前

8

問題文

正六角形2つが図のように配置されています。赤い線分と青い線分の長さの比が1:4であるとき、緑で示した角Yの角度を求めてください。
ただし、図中"center"で示した点は正六角形の外心です。

解答形式

0~360までの半角数字で、「°」や「度」をつけずに解答してください。

求面積問題5

Kinmokusei 自動ジャッジ 難易度:
5年前

10

問題文

正方形が2つ、図のように配置されています。赤い線分の長さが20のとき、緑で示した四角形の面積を求めてください。
ただし、図中の青点はそれぞれの正方形の対角線の交点です。

解答形式

半角数字で解答してください。

Factorial Fraction

sapphire15 自動ジャッジ 難易度:
5年前

26

問題文

非負整数$n$に対し関数$f$を次のように定める。

$$f(n) = \frac{(n^2)!}{(n!)^{n+1}}$$

$1$から$2020$までの整数について$f(n)$が整数となるような$n$の個数を求めよ。

解答形式

半角数字で入力せよ。

最大・最小問題

zyogamaya 自動ジャッジ 難易度:
4年前

20

問題文

$a,b,c$がいずれも正の実数であり、$a+b+c=5,abc=1$が成り立つとき、$ab+bc+ca$の最小値を求めよ。

解答形式

答えは既約分数になります。/を用いて入力してください。
例:$\displaystyle\frac{5}{7}$→5/7