$$ I_n=\int_{1}^{n}\log x dx $$
とする。ただし$n$は非負の整数。以下の設問に答えよ。ただし、必要ならば以下の式を用いてよい。
$$ e^x=\sum_{k=0}^{\infty}\frac{x^k}{k!}$$
入試本番や模試のような形で、記述形式で解答してください。
少し遅くなってしまうかも知れませんが、採点もさせていただきます。
解説は正解者のみに公開される設定になっています。ですが、ヒントの欄に書いてあることと全く同じなので、正解できなかった場合もヒントをみて納得してもらえるとよいと思います。
問題の感想を教えてくれると嬉しいです。特に、難易度感や、教育的意義についてコメントしてくれると助かります。
例えば、以下のような観点でコメントしてくれると嬉しいです。
(もちろん、全てのテーマでコメントせずとも大丈夫ですし、他の観点からのコメントや批判も歓迎します)
1
グラフの面積に着目して議論すると良い。その際
$$\log n! = \sum_{k=1}^{n} \log k$$
を用いて議論することが有用だろう。
2
1で示した不等式を上手く用いることがカギ。不等式を用いた極限なので、挟み撃ちの原理が使える。
この問題を解いた人はこんな問題も解いています