[D] マトリョーシカ積分

masorata 自動ジャッジ 難易度: 数学 > 高校数学
2020年10月17日10:00 正解数: 17 / 解答数: 27 (正答率: 63.0%) ギブアップ不可
積分 まそらた杯
この問題はコンテスト「第1回まそらた杯」の問題です。

解答

⑴ $a,b,m$ を $1$ 以上 $9$ 以下の整数として、
$$
\begin{eqnarray}
f\left( \frac{a+\sin(\theta)}{b}\right)=\frac{a+\sin(m\theta)}{b} \cdots\ast
\end{eqnarray}
$$
が $\theta$ の恒等式になるような $a,b,m$ の組を求めよう。
 $\ast$で $\theta=0$ として $f(a/b)=a/b$ であり、方程式 $f(x)=x$ の解のうち有理数であるものは $x=1/2$ だけなので $2a=b$ がわかる。
 次に $\ast$で $2a=b$ としてから $\theta=\pi/2$ を代入すると $\sin(m\pi/2)=3-4/a^2$ が得られる。$m$ が $1$ 以上 $9$ 以下の整数のとき $\sin(m\pi/2)=1,-1,0$ であるが、$a\geq2$ で $3-4/a^2\geq2$ であるから、$a=1$ が必要である。さらにこのとき $\sin(m\pi/2)=-1$ となるので、$m=3$ としてみる。すると3倍角の公式 $\sin(3\theta)=-4\sin^3\theta+3\sin\theta$ により、

$$
\begin{eqnarray}
f\left( \frac{1+\sin(\theta)}{2}\right)=\frac{1+\sin(3\theta)}{2}
\end{eqnarray}
$$

が $\theta$ の恒等式になっていることが確認できる(なお、他の $m$ の値が条件を満たさないことも容易に分かる)。したがって $\fbox{ア}=1,\fbox{イ}=2,\fbox{ウ}=3$ である。

⑵ $\displaystyle x=\frac{1+\sin\theta}{2}$ と置換すると、⑴の結果より $\displaystyle f(f(f(x)))=\frac{1+\sin27\theta}{2}$ であるから、

$$
\begin{eqnarray}
\int_ {0.5} ^{0.75} f(f(f(x))) dx&=&\frac{1}{4}\int_ {0} ^{\pi/6} \cos\theta(1+\sin27\theta) d\theta\\
&=&\frac{1}{8}\int_ {0} ^{\pi/6} (2\cos\theta+\sin28\theta+\sin26\theta) d\theta\\
&=&\frac{1}{8}\left[2\sin\theta-\frac{\cos28\theta}{28}-\frac{\cos26\theta}{26}\right]^{\pi/6}_{0}\\
&=&\frac{1}{8}\left(\left(1+\frac{1}{56}-\frac{1}{52}\right)-\left(0-\frac{1}{28}-\frac{1}{26} \right)\right)\\
&=&\frac{781}{5824}
\end{eqnarray}
$$

である。よって $\fbox{エオカ}=781,\fbox{キクケコ}=5824$ である。


おすすめ問題

この問題を解いた人はこんな問題も解いています


問題文

$a$ を実数の定数とする。正の実数値をとる関数 $y(x)$ は何回でも微分可能で、

$$
\begin{cases}
2yy''''+(y'')^2=2y'y'''+a & (x \in {\mathbb R})\\
y'(0)=y''(0)=0 \\
y'''(0)=y''''(0)=1
\end{cases}
$$

を満たすとする。$\displaystyle a=\frac{50}{17}$ のとき、($x$ が実数全体を動くときの)$y(x)$ の最小値は $\displaystyle \frac{\fbox{アイ}}{\fbox{ウエオ}}$ である。

解答形式

ア〜オには、0から9までの数字が入る。
文字列「アイウエオ」をすべて半角で1行目に入力せよ。
ただし、それ以上約分できない形で答えよ。

[B] キメラ漸化式

masorata 自動ジャッジ 難易度:
3年前

42

問題文

$N$ を正の整数として、以下の条件をすべて満たす数列 $\{a_n \}$ $(n=1,2,...)$ を考える。

・$a_1=1$
・$a_N=2020$
・すべての正の整数 $n$ について $\displaystyle \frac{a_{n+1}}{a_n}+\frac{4a_n}{a_{n+1}}=\frac{1}{a_n}- \frac{2}{a_{n+1}}+4$ が成り立つ。

このとき、$N=\fbox{アイ}$ である。また $a_7=\fbox{ウエオ}$ である。

解答形式

ア〜オには、0から9までの数字が入る。
$N=\fbox{アイ}$ の答えとして、文字列「アイ」をすべて半角で1行目に入力せよ。
$a_7=\fbox{ウエオ}$ の答えとして、文字列「ウエオ」をすべて半角で2行目に入力せよ。

3年前

39

問題文

$7^{7^7}$ を $777$ で割ったあまりを求めよ。

(注:$7^{7^7}$ は「 $7$ の「 $7$ の $7$ 乗」乗」を表すものとする。)

解答形式

$0$ 以上 $776$ 以下の整数を、半角数字で1行目に入力せよ。

[A] 東大レベル!

masorata 自動ジャッジ 難易度:
3年前

73

問題文

次の条件(a), (b)をともに満たす自然数($1$ 以上の整数)$\rm{A}$ の最小値を求めよ。

(a) $\rm{A}$ は連続する $3$ つの自然数の和である。

(b) $\rm{A}$ を $10$ 進法で表したとき、$1$ が連続して $9$ 回以上現れるところがある。

解答形式

半角数字のみで1行目に入力せよ。

3年前

27

問題文

(1)$\displaystyle \tan\theta=\frac{1}{4}$ のとき、$\displaystyle \tan2\theta=\frac{\fbox{ア}}{\fbox{イウ}}$ である。

(2)連立方程式

$$
\begin{cases}
x_1=x_2(2+x_1x_2) \\
x_2=x_3(2+x_2x_3) \\
x_3=x_4(2+x_3x_4) \\
x_4=x_1(2+x_4x_1)
\end{cases}
$$

を満たす実数 $(x_1,x_2,x_3,x_4)$ の組は全部で $\fbox{エオ}$ 個あり、そのうち $\tan20^\circ < x_1 < \tan80^\circ$ を満たすような組は $\fbox{カ}$ 個ある。

解答形式

ア〜カには、0から9までの数字が入る。
(1)の答えとして、文字列「アイウ」を半角で1行目に入力せよ。
(2)の答えとして、文字列「エオカ」を半角で2行目に入力せよ。

3年前

16

問題文

正の実数に対して定義され正の実数値をとる関数 $f$ が、任意の正の実数 $x,y$ に対して

$$
f\left(\frac{x+y+1}{xy}\right)=\frac{f(x)f(y)}{x+y+1}
$$

を満たすとき

$$
f\left(\frac{11}{21}\right) = \frac{\fbox{アイウエ}}{\fbox{オカキ}}
$$

である。

解答形式

ア〜キには、0から9までの数字が入る。
文字列「アイウエオカキ」を半角で1行目に入力せよ。
ただし、それ以上約分できない形で答えよ。

[B] Triangles 1

halphy 自動ジャッジ 難易度:
3年前

16

問題文

$k>0$ を整数の定数とする。以下の条件

$$
{\rm AB}=8, {\rm AC}=k, \angle {\rm ABC}=60^{\circ}
$$

を満たす三角形 ${\rm ABC}$ が存在するような整数 $k$ の最小値は $\fbox{\text{ア}}$ である。

また,条件を満たす三角形 ${\rm ABC}$ が一意的に存在するような整数 $k$ の最小値は $\fbox{イ}$ である。

ただし,互いに合同であるような $2$ つの三角形は区別しない。

解答形式

空欄 $\fbox{ア}$ 〜 $\fbox{イ}$ には,半角数字 0 - 9 のいずれかが当てはまります。$\fbox{ア}$ 〜 $\fbox{イ}$ に当てはまるものを改行区切りで入力してください。


問題文

以下の文がそれぞれ正しくなるように、空欄に $0$ から $9$ までの数字を埋めよ。ただし、同じ文字の空欄には同じ文字が入る。

(1)数列 $\fbox{ア}, \fbox{イ}, \fbox{ウ}, \fbox{エ},\fbox{オ}$ には、
$0$ が $\fbox{ア}$ 回、$1$ が $\fbox{イ}$ 回、$2$ が $\fbox{ウ}$ 回、$3$ が $\fbox{エ}$ 回、$4$ が $\fbox{オ}$ 回、それぞれ現れる。

(2)数列 $\fbox{カ}, \fbox{キ}, \fbox{ク}, \fbox{ケ}, \fbox{コ}, \fbox{サ}, \fbox{シ}, \fbox{ス}, \fbox{セ}, \fbox{ソ}$ には、
$0$ が $\fbox{カ}$ 回、$1$ が $\fbox{キ}$ 回、$2$ が $\fbox{ク}$ 回、$3$ が $\fbox{ケ}$ 回、$4$ が $\fbox{コ}$ 回、
$5$ が $\fbox{サ}$ 回、$6$ が $\fbox{シ}$ 回、$7$ が $\fbox{ス}$ 回、$8$ が $\fbox{セ}$ 回、$9$ が $\fbox{ソ}$ 回、それぞれ現れる。

解答形式

ア〜ソには、0から9までの数字が入る。
(1)の答えとして、文字列「アイウエオ」を半角で1行目に入力せよ。
(2)の答えとして、文字列「カキクケコサシスセソ」を半角で2行目に入力せよ。

求長問題5

Kinmokusei 自動ジャッジ 難易度:
3年前

15

問題文

※解答形式に注意!

図のように配置された3つの正三角形があります。青い線分の長さを求めてください。
ただし、赤、紫、緑の線分の長さはそれぞれ1,2,3で、隣り合う正三角形の間の角は30°です。

解答形式

答えは自然数$A,B$を用いて$A\sqrt{B}$の形に表せます。$A+B$を解答してください。
ただし、根号の中はできるだけ小さい自然数にしてください。

expもどき

masorata 自動ジャッジ 難易度:
3年前

10

問題文

すべての複素数に対して定義され、複素数の値をとる関数 $f(z)$ は、すべての複素数 $z,w$ について

$$
f(z+w)=f(z)f(w)+zw ...(*)
$$

をみたすとする。以下の問いに答えよ。

⑴ すべての複素数 $z$ について $f(2)f(z)+z = f(1)f(z+1)+1$ が成り立つことを示せ。
⑵ $(*)$ をみたすような $f(z)$ をすべて求めよ。

解答形式

⑵を解答したうえで、以下の空欄ア~エに当てはまる0~9の整数を順に並べて4桁の半角数字「アイウエ」を入力せよ。根号の中身が最小になるように解答せよ。

$|f(5+11i)|$ のとりうる値のうち最大のものは$(アイ)$, 最小のものは$(ウ)\sqrt{(エ)}$ である。

[A] minimum value (easy)

okapin 自動ジャッジ 難易度:
3年前

15

問題文

原点$O$とする$xy$平面上で点$(3,2)$を通る傾き負の直線と$x$軸,$y$軸との交点をそれぞれ$A,B$とするとき、$\triangle OAB$の面積の最小値を求めよ。

解答形式

整数または既約分数で答えてください。
半角で入力してください。

[D] monotonous decrease

Benzenehat 自動ジャッジ 難易度:
3年前

13

問題文

$k$を$0$以上の実数, $e$を自然対数の底とする。数列$a_n$を
$$a_n=\frac{n!e^n}{n^{n+k}}$$
と定める。任意の自然数$n$に対して, $a_{n+1} < a_n$が成り立つような最小の$k$を求めよ。

解答形式

整数または既約分数で答えてください。