ブロックの分解(中学生でもできます)

obenben 自動ジャッジ 難易度: 数学 > 中学数学
2025年9月15日21:29 正解数: 4 / 解答数: 7 (正答率: 57.1%) ギブアップ数: 1
中学生 二等分 規則性 

(1)2^nが最後のブロックの数だと気づくのがポイント❗️ そうすると、4194304は2^22となるので
答え→22
(2)2^nに12を代入すると、4096だとわかる。1つの体積は10なので、4096×10=40960
答え→40960
(3)等分した回数の数は、等分されて出来たブロック-1だとわかるので
答え→2^n-1
(4)等比数列だと気付くのがミソ❗️❗️
1+r+r^2+r^3・・・r^(n-1)である
これを活用すつことで表せる。説明がドチャクソ面倒いので、詳しく知りたい人はそこら辺のAIに聞いてください
答え→2^(n+1)-1


おすすめ問題

この問題を解いた人はこんな問題も解いています

確率基礎

yax 自動ジャッジ 難易度:
3月前

3

ある箱Hに赤玉5個、白玉4個入っている、Aさんが白たまを引くとき、Bさんは青玉を白玉の代わりに入れる、
同様に赤玉を引いたとき、Bさんは緑玉を代わりに入れる、その後Gさんが箱から玉を取り出す、この時青玉を取り出す確率は幾つであるか

回答は
該当/全体的
で記入してください


問題文

次の連立方程式において、x,yの値を求めよ
ただし、x>yとする
4x²+4x-4y²=-1
x²+6x+6y=61

解答形式

すべて半角でx=◯,y=◯と入力
分数は分子/分母と入力
例 x=1,y=-1/3

直線の総数

smasher 自動ジャッジ 難易度:
2月前

5

問題文

平面に重複なく$2N$個の点を打ち、任意の点を$2$個ずつ選んで$N$本の直線を作る。
ある打った$2N$個の点に対して、どの直線も交わらないような結び方の総数を$S(N)$とする。$S(N)$が取りうる$2025$以下の正整数値をすべて求めよ。
ただし、$N$は正整数とする。

解答形式

$S(N)$が取りうる値の総和を半角数字で入力してください。

13日前

6

${}$ 西暦2026年問題第8弾です。$2026$を$2^{26}$とする強引な西暦問題となりました。ついでに書くと、どこかに類題がありそうで、その点でも恐れています。皆さんはそんな僕の恐れなど気にせずにお楽しみください。

解答形式

${}$ 解答は1行目に$p_3$の値を、2行目に$p_4$の値を、それぞれ半角で入力してください。「$p_3=$」「$p_4=$」といった記載は不要です。
(例)$p_3=$108、$p_4=$2026 → 《1行目》$\color{blue}{108}$、《2行目》$\color{blue}{2026}$


${}$ 西暦2026年問題第10弾です。今年の最終回を迎えました。最終回はどこから手を付けていいのか迷ういそうな問題を用意しています。とはいえ、タネに気づけばサクッと解けるように仕込んであります。じっくりと腰を据えてお楽しみください。

解答形式

${}$ 解答は求める$x$の値を小さい順に2行に分けて半角で入力してください。「$x=$」の記載は不要です。
(例)$x=$110, 2026 → 《1行目》$\color{blue}{110}$、《2行目》$\color{blue}{2026}$

13日前

7

問題文

$m,n$を整数とします。
$$(m+n)!+2025^{{n}^{m}}=2026^{mn+1}$$
を満たす組$(m,n)$について、$mn$の総積を求めてください。

解答形式

半角数字で入力してください。


${}$ 西暦2026年問題第7弾です。見た目も実際もがっつり整数問題です。ひととき整数と戯れてみてください。
 なお、$2026$より大きい整数の素数判定が待ち受けています。適宜、素数表(たとえば https://en.wikipedia.org/wiki/List_of_prime_numbers )を利用するなり、Wolfram|Alpha( https://www.wolframalpha.com )を利用するなりしてください。

解答形式

${}$ 解答は求める値をそのまま半角で入力してください。
(例)107 → $\color{blue}{107}$
 求められているのは平方数と素数に挟まれた数であることに注意してください。

問題3

sulippa 自動ジャッジ 難易度:
6月前

8

問題文

$p=3, \quad q=5, \quad r=7$

$X = p^q + q^p$
$Y = q^r + r^q$
$Z = r^p + p^r$

$N = X^p + Y^q + Z^r$

このとき、$N$を$105$で割った余りを求めよ。

解答形式

半角左詰め

18日前

7

${}$ 西暦2026年問題第3弾は規則性の問題でお送りします。あることに気づけば機械的な計算で答えが求まります。規則性の妙をお楽しみください。

解答形式

${}$ 解答は$n$の値を半角でそのまま入力してください。「$n=$」の記載は不要です。
(例)$n=103$ → $\color{blue}{103}$
 なお、この条件を満たす$n$が存在しない場合には、$\color{blue}{-1}$と入力してください。

各桁の積

smasher 自動ジャッジ 難易度:
4月前

10

問題文

ある非負整数$n$に対し、$f(n)$で$n$の各桁の積を表すものとする。
$n=f(n)$を満たす$n$の個数を求めよ。

解答形式

有限ならば半角数字でその個数を、無限ならば$-1$を入力してください。

400A

MARTH 自動ジャッジ 難易度:
3月前

6

以下で定義される関数 $f(n)$ について, $f(1000)$ を互いに素な正整数 $a,b$ を用いて, $\dfrac{a}{b}$ と表したとき, $ab$ が$2$ で割り切れる最大の回数を求めてください.

$$
f(n)=\sum_{m=1}^{n}\frac{mn^{n-m-1}}{(n-m)!}
$$

整数問題

smasher 自動ジャッジ 難易度:
2月前

8

問題文

$p,q$を素数とする。
$pq(p+q)$が平方数となるものをすべて求めよ。

解答形式

ありうる組$(p,q)$について$pq$の総和を半角数字で入力してください。