自然数$a,b,c,d$は
$$
a\neq b
$$ $$
(a+b)(a-b)+(ad-bc)=0
$$ $$
bc-a^2=1
$$
を満たしています.このとき
$$
\frac{c-d}{a-b}
$$
の取り得る値を全て求めてください.
半角数字で解答してください.複数ある場合は小さい順に一行ずつ入力してください.
Ex:答えが「1」と「-$\frac{3}{89}$」と「100」のとき
-3/89
1
100
と解答してください.
$$
\frac{c-d}{a-b}=1+\frac{1+a^2+b^2}{ab}
$$
です.
$$
\frac{1+a^2+b^2}{ab}
$$
は必ず自然数になります.
b>aのとき
$$
\frac{1+a^2+b^2}{ab}=k
$$
とおくと,$x$についての二次方程式
$x^2-kax+a^2+1=0$は$b$を解に持ちます.
このときもう一つの解についてなにか性質がいえないでしょうか.
この問題を解いた人はこんな問題も解いています