Twitterログイン廃止のお知らせ (2023年2月3日8:45)
本サービスは、2/8をもちましてTwitterログインの提供を停止します。2/9以降、Twitterログインができなくなりますのでご注意ください。該当するユーザーは、至急対応をよろしくお願いいたします。 詳細はこちら→ https://pororocca.com/news/30

リムジン

ofukufukufuku 自動ジャッジ 難易度: 数学 > 高校数学
2020年6月12日15:59 正解数: 8 / 解答数: 14 (正答率: 57.1%) ギブアップ不可

問題文

全長 $L$ mのリムジンが、下図のように直角に曲がったトンネルを、幅 $a(>0)$ mの道から幅 $b(>0)$ mの道へ曲がろうとしている。
このとき、リムジンがトンネルを曲がることのできる最大の全長 $L_{max}$ (m)を求めよ。なお、車の全幅は考えなくて良いものとする。

解答形式

$a=5,b=6$のときの$L_{max}$の値を関数電卓を用いて計算せよ。答えは、小数第4位の数字を四捨五入したものを解答せよ。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Sign in with Google Discordでログイン パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

Thirteen Ones

halphy 自動ジャッジ 難易度:
2年前

18

問題文

$n\geq 2$ を自然数とする。$2$ 進数表記で
\begin{equation}
N=\underbrace{11\cdots 11}_n \underbrace{00\cdots 00} _ {n-1} {} _ {(2)}
\end{equation}と表される自然数 $N$ を考える。$n=13$ のとき,$N$ の正の約数の総和を求めなさい。

解答形式

$2$ 進数で答えなさい。

hinu問題02

hinu 自動ジャッジ 難易度:
2年前

24

問題文

$a,b,c$ を実数とする。次の連立方程式を解け。

$$
a^2-4b-1=0\\
b^2-8c+28=0\\
c^2-6a+2=0\\
$$

解答形式

a,b,cを半角数字として(a,b,c)で解答してください。無理数などを使いたい場合はTeXコマンドを使用してください。

hinu積分01

hinu 自動ジャッジ 難易度:
2年前

12

問題

定積分

$$
\int_0^{\pi/2}\dfrac{\cos{x}-x}{1+\sin{x}}dx
$$

を計算せよ。

回答形式

半角数字で答えよ。無理数や記号等を用いる場合はTeX形式で入力せよ。

整数問題①

lucy 自動ジャッジ 難易度:
2年前

15

問題文

$x!+2=y^4+5y$を満たす自然数$(x,y)$の組をすべて求めよ。

解答形式

以下の文章に入る$a,b,c$の値を入力せよ。1行目に$a$を、2行目に$b$を、3行目に$c$を入力すること。

条件を満たす自然数の組は$a$組存在する。その組の中で、$x$が最大となるような組は$(x,y)=(b,c)$である。

hinu積分03

hinu 自動ジャッジ 難易度:
2年前

13

問題文

定積分

$$
\int_0^1 (\sqrt[7]{1-x^{11}}-\sqrt[11]{1-x^{7}})dx
$$

を求めよ。

解答形式

値は半角数字で記述せよ。無理数などを用いたい場合は必要ならばTeX記法により記述せよ。

Factorial Fraction

sapphire15 自動ジャッジ 難易度:
2年前

18

問題文

非負整数$n$に対し関数$f$を次のように定める。

$$f(n) = \frac{(n^2)!}{(n!)^{n+1}}$$

$1$から$2020$までの整数について$f(n)$が整数となるような$n$の個数を求めよ。

解答形式

半角数字で入力せよ。

logの重複合成

shakayami 自動ジャッジ 難易度:
2年前

12

問題文

$f_m(x)$という関数列を$f_1(x)=\log{x},f_{m+1}=\log{f_m(x)}$と定義します。ただし$\log{x}$は自然対数です。
具体的には$f_1(x)=\log{x},f_2(x)=\log{\log{x}},f_3(x)=\log{\log{\log{x}}},\ldots$となります。
このとき、
$$\lim_{n\to\infty}\{f_m(3^n)-f_m(2^n)\}=0$$
となるような最小の自然数$m$を求めてください。

解答形式

半角数字で入力してください。

[B] constant variable

Benzenehat 自動ジャッジ 難易度:
2年前

18

問題文

ある大きさの球から、ある直径の円柱をくりぬいた。円柱の軸は球の中心を通る。(ビーズのような形を想像してください)
この立体の体積が$36\pi$のとき、以下のうちいずれかの値が一意に定まる。

  1. 円柱の底面の半径
  2. 球の半径
  3. 円柱の深さ

一意に定まるものの番号と、その値を求めよ。

解答形式

一意に定まるものの番号を半角数字で1行目に、その値を2行目に入れてください。2行目は整数または既約分数で答えてください。

解答例

1
4

無理関数の最大値

zyogamaya 自動ジャッジ 難易度:
2年前

6

問題文

関数
$f(x)=\sqrt[3]{-(x+4)(2x+3)(3x-8)}\ \left(\displaystyle -\frac{3}{2} \leq x \leq \frac{8}{3}\right)$
の最大値を求めよ。

解答形式

半角数字またはTeXを入力してください。

求値問題3

Kinmokusei 自動ジャッジ 難易度:
2年前

7

問題文

$x_1,x_2,\ldots,x_{24}$は正の実数とします。このとき、次の式の最小値を求めてください。
$$
\left(\sum_{n=1}^{24}\frac{n}{x_n}\right)\times\left(\sum_{n=1}^{24}nx_n\right)
$$

解答形式

半角数字で解答してください。

Chocolate

okapin 自動ジャッジ 難易度:
2年前

8

問題文

おかぴんはチョコレート入りの袋が3袋入った箱を持っていて、これから食べようとしています。
しかし、おかぴんは怠惰なので食べ終わった空の袋を捨てずに、再び箱の中に入れてしまいます。
箱の中から1袋ずつ取り出して、それがチョコレートの入った袋だったなら食べて箱の中に空の袋を戻し、それが空の袋だったなら食べずにそのまま箱の中に戻す、という試行を繰り返します。
チョコレートの入った袋を取り出す確率も空の袋を取り出す確率も同様に確からしいとするとき、箱の中の全てのチョコレートを食べ終えるまでの試行回数の期待値を求めてください。

解答形式

答えは$\frac{\fboxア}{\fboxイ}$(ただし既約分数)となります。$\fboxア\fboxイ$に入る数字をそれぞれ1,2行目に半角で入力してください。

求面積問題14

Kinmokusei 自動ジャッジ 難易度:
2年前

9

問題文

周の長さが30である長方形ABCDがあります。辺CD上に∠APB=90°となるような点Pをとれるとき、長方形ABCDの面積の最大値を求めてください。

解答形式

半角数字で解答してください。