2024①

seven_sevens 自動ジャッジ 難易度: 数学 > 高校数学
2023年10月26日12:51 正解数: 9 / 解答数: 13 (正答率: 69.2%) ギブアップ数: 2
整数 整数問題 近似

全 13 件

回答日時 問題 解答者 結果
2024年7月6日22:18 2024① Weskdohn
正解
2024年4月3日11:26 2024① D-butu
正解
2023年12月31日14:32 2024① nmoon
正解
2023年12月28日23:05 2024① k_sub
正解
2023年11月23日18:23 2024① mochimochi
正解
2023年11月19日11:57 2024① taso
不正解 (1/2)
2023年11月19日11:56 2024① taso
不正解 (1/2)
2023年11月19日11:55 2024① taso
不正解 (1/2)
2023年10月27日18:27 2024① mahiro
正解
2023年10月27日15:00 2024① Furina
正解
2023年10月27日9:24 2024① yoyufutsu
正解
2023年10月27日9:18 2024① yoyufutsu
不正解 (0/2)
2023年10月26日15:12 2024① naoperc
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

2024⑤

seven_sevens 自動ジャッジ 難易度:
19月前

10

問題文

$m^2+2024=n^2$となる自然数の組$(m,n)$をすべて求めよ。

解答形式

(m,n)
という形で解答してください。
答えが複数ある場合は改行区切りで入力してください。
また、mが小さい順に解答をしてください。

2024②

seven_sevens 自動ジャッジ 難易度:
19月前

12

問題文

$[\sqrt[11111]{2024!}]$を求めよ。ただし、$\log_{10}2=0.3010$、$\log_{10}3=0.4771$とする。

解答形式

数字のみを記入してください。

2年前

9

(2022/08/14 0:12追記)

問題文に誤りがあったため、修正しました。

問題文

頂角が $30$ 度または $90$ 度である二等辺三角形を図のように配置しました。このとき、ピンクで示した角の大きさは何度ですか?

解答形式

ピンクの角 $=x$ 度です。$x$ に当てはまる $0$ 以上 $180$ 未満の値を半角数字で解答してください。


問題文

$\angle B$ が鋭角である三角形 $ABC$ がある.いま,$\angle A$ の二等分線と辺 $BC$ との交点を $D$ とし,$D$ から辺 $AB$ に下ろした垂線の足を $H$ とする.$AH = 1944, HB = 2, AC = 2023$ がそれぞれ成り立つとき,辺 $BC$ の長さを求めよ.

解答形式

半角数字で解答してください.

2年前

11

問題文

図の条件の下で、線分 $CG$ の長さを求めてください。
※図中の各線分の長さの比は正確とは限りません。

解答形式

互いに素な正整数 $a,b$ によって $CG=\dfrac{a}{b}$ と表せるので、$a+b$ の値を半角数字で解答してください。

2年前

10

問題文

図の条件の下で、赤で示した線分の長さ $x$ を求めてください。

解答形式

$x^2$ の値を半角数字で解答してください。

求角問題6

Kinmokusei 自動ジャッジ 難易度:
4年前

8

問題文

図のように長方形や直角三角形の内接円が配置されています。青で示した角の角度を求めてください。

解答形式

度数法で求め、半角数字で0以上360未満の整数を解答してください。
※度や°などの単位は付けないでください。

2年前

14

問題文

図の条件の下で、青で示した三角形の面積を求めてください。

解答形式

解答は互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので、$a+b$ の値を半角数字で解答してください。

2年前

13

問題文

図の条件の下で、$x$ で示した角の大きさを求めてください。
ただし、外側の三角形は鋭角三角形であるとします。

解答形式

$x=a$ 度です $(0<a<30)$ 。$a$ の値を半角数字で解答してください。

2年前

15

問題文

図の条件の下で、青で示した線分の長さ $x$ を求めてください。

解答形式

互いに素な正整数 $a,b$ を用いて $x=\dfrac{a}{b}$ と表せるので $a+b$ の値を半角数字で解答してください。

Combination

Gauss 自動ジャッジ 難易度:
3年前

15

問題文

$$
\sum_{k=1}^{10} {}_{10}{\mathrm{C}}_{k}\cdot9^k\cdot k
$$

解答形式

半角数字で入力してください。

2年前

15

問題文

図の条件の下で、青で示した三角形の面積 $x$ を求めてください。
※ regular hexagon:正六角形

解答形式

$x$ の値を半角数字で解答してください。