SMC100-25

MARTH 自動ジャッジ 難易度: 数学 > 高校数学
2023年11月11日7:34 正解数: 20 / 解答数: 22 (正答率: 90.9%) ギブアップ不可
整数

全 22 件

回答日時 問題 解答者 結果
2025年10月28日10:26 SMC100-25 Weskdohn
正解
2025年8月27日12:22 SMC100-25 piroshiki
正解
2025年4月25日0:01 SMC100-25 OYU__0YU
正解
2024年12月31日13:51 SMC100-25 punie
正解
2024年4月29日14:46 SMC100-25 see
正解
2024年4月29日14:34 SMC100-25 see
不正解
2024年4月28日16:37 SMC100-25 meatmeet
正解
2024年4月15日11:40 SMC100-25 simasima
正解
2024年4月14日21:45 SMC100-25 Ninja-Sushi-Manga
正解
2024年3月15日17:08 SMC100-25 ゲスト
正解
2024年1月5日14:54 SMC100-25 matsukichi
正解
2023年12月13日17:30 SMC100-25 RyAy
正解
2023年12月13日17:28 SMC100-25 ゲスト
正解
2023年11月24日19:01 SMC100-25 Butterflv
正解
2023年11月24日18:57 SMC100-25 Butterflv
不正解
2023年11月22日17:17 SMC100-25 miq_39
正解
2023年11月19日9:29 SMC100-25 bzuL
正解
2023年11月13日19:21 SMC100-25 naoperc
正解
2023年11月12日16:10 SMC100-25 natsuneko
正解
2023年11月11日11:59 SMC100-25 highlighter_math
正解
2023年11月11日11:14 SMC100-25 nmoon
正解
2023年11月11日7:36 SMC100-25 wasab1
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

自作問題1

mahiro 自動ジャッジ 難易度:
2年前

16

問題文

$$\angle{ADB}=\angle{ADC}=\angle{CDB}=90^°$$なる四面体 $ABCD$ の外接球に関して、体積を $V$ 表面積を $S$ としたとき、非負整数 $p$ を用いて、$V=p\pi,S=p\pi$ が成り立ちました。
このとき、四面体 $ABCD$ の体積の最大値の2乗を求めてください。

解答形式

半角数字で入力して下さい。

BMC002-E

MARTH 自動ジャッジ 難易度:
23月前

14

直方体 $ABCD-EFGH$があり, $AB=\sqrt{2},AD=2023\sqrt{2},AE=2024\sqrt{2}$ です. 三角形 $BDE$ の面積を求めてください.

OMC没問1

natsuneko 自動ジャッジ 難易度:
2年前

11

問題文

実数 $x,y$ が $x^2+y^2 = 1$ を満たしています. このとき, $\cfrac{7xy-5x-5y+22}{x^2-10x+25}$ のとり得る最大値を $M$, 最小値を $N$ としたときの $NM$ の値を求めてください. ただし, 答えは互いに素な正整数 $a,b$ を用いて $\cfrac{b}{a}$ と表されるので, $a+b$ の値を解答して下さい.

解答形式

非負整数値を解答して下さい.

初投稿

Butterflv 自動ジャッジ 難易度:
24月前

23

問題文

任意の二次関数$\ f\ $についてある$\ \theta \ (0\le \theta \le 2\pi)$があって,$\ xy$座標平面上で$\ y=f(x)\ $を$\ \theta \ $反時計回りに回転させたものを考える.$\ $これがある関数$\ g(x)\ $で$\ y=g(x)\ $と表せるときの$\ \theta\ $としてありうるものの総和を$\ S\ $とするとき$\ S\ $を超えない最大の整数を回答して下さい.

解答形式

整数で回答してください.

OMC没問2

natsuneko 自動ジャッジ 難易度:
24月前

9

問題文

正整数 $n$ に対して, $n^i \equiv 1 \ (\textrm{mod} \ 25 )$ を満たす最小の正整数 $i$ を $f(n)$ とします. (ただし, このような $i$ が存在しない場合は, $f(n) = 0$ とします.) このとき, $1 \leq n \leq 10000$ の範囲で $f(n)$ が最大値をとるような $n$ の総積を $1000$ で割った余りを解答して下さい.

解答形式

非負整数値を解答して下さい.

求長問題15

Kinmokusei 自動ジャッジ 難易度:
4年前

11

問題文

内接四角形ABCDとその対角線の交点Mについて、図のような条件が与えられたとき、線分ACの長さを求めてください。

解答形式

半角数字で解答してください。

21月前

18

問題文

下図で、三角形ABCは直角二等辺三角形、三角形BCDは直角三角形です。CDの長さが3cm、DBの長さが11cmのとき、三角形ABCの面積は何㎠ですか。

解答形式

半角数字で回答してください。
例)10

2年前

17

【補助線主体の図形問題 #117】
 今週の図形問題です。少しずつ発見を積み重ねていく、やや重めの問題となっています。どうぞじっくりと取り組んでやってください。

お詫びと訂正

${}$ 投稿時点から翌日10月2日(月)午前1時過ぎまで、$\mathrm{AB} > \mathrm{AC}$となるべきところが$\mathrm{AB} > \mathrm{BC}$となっていました。お詫びして訂正いたします。現在は修正済みの画像となっています。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

QMT001(自作問題1問目)

shoko_math 自動ジャッジ 難易度:
20月前

13

問題文

$4\times4$ のマス目の各マスに $3,2,6$ のいずれかを書き込む方法のうち,どの横の行に書かれた $4$ 数の積も立方数であり,どの縦の列に書かれた $4$ 数の積も立方数であるような書き込み方は何通りあるかを求めてください.
ただし,回転や裏返しにより一致する書き込み方も異なるものとして数えるものとします.また,$3,2,6$ のうち使わない数があっても構いません.

解答形式

半角数字で解答してください.

素数の方程式

hkd585 自動ジャッジ 難易度:
2年前

16

問題文

$2^{p+q}-p^{q}=13$を満たす素数$\left(p,q\right)$をすべて求めよ.

解答形式

$p^{2}+q^{2}$の値を,半角数字で解答してください.答えが複数ある場合は,値の小さい順に,1行に1つずつ書いてください.

(例)
解答が$\left(p,q\right)=\left(2,7\right),\left(5,11\right)$のときは,以下のように解答します.

53
146

3年前

11

問題文

図の条件の下で、線分 $OO'$ の長さを求めてください。

解答形式

$OO'^2$ は正整数になるので、その値を半角数字で解答してください。

座王001(G1)

shoko_math 自動ジャッジ 難易度:
20月前

15

問題文

鋭角三角形 $ABC$ の垂心を $H$,外心を $O$ とし,$A$ から $BC$ に下ろした垂線の足を $D$ とします.
$OH=3,AH:HD=7:2$ であり,$\triangle{ABC}$ の外接円半径が $5$ であるとき,${OD}^2$ の値は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.