OMC没問1

natsuneko 自動ジャッジ 難易度: 数学 > 高校数学
2023年10月30日14:07 正解数: 8 / 解答数: 11 (正答率: 72.7%) ギブアップ数: 6
代数

全 11 件

回答日時 問題 解答者 結果
2025年5月13日20:09 OMC没問1 Weskdohn
正解
2024年6月3日22:12 OMC没問1 shakayami
不正解
2024年4月15日11:22 OMC没問1 simasima
正解
2024年1月4日15:09 OMC没問1 matsukichi
正解
2023年12月26日11:19 OMC没問1 tima_C
正解
2023年11月5日10:35 OMC没問1 bzuL
正解
2023年11月3日10:54 OMC没問1 Furina
正解
2023年11月2日7:44 OMC没問1 miq_39
正解
2023年11月2日7:42 OMC没問1 miq_39
不正解
2023年11月1日23:32 OMC没問1 miq_39
不正解
2023年10月30日17:49 OMC没問1 naoperc
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

cosを含む総和

J_Koizumi_144 自動ジャッジ 難易度:
17月前

9

問題文

以下の値を求めてください。
$$
\sum_{1\leqq m<n\leqq 9} \biggl(\cos\dfrac{m\pi}{10}+\cos\dfrac{n\pi}{10}+1\biggr)^3
$$

解答形式

答えは正整数になるので、それを半角数字で解答してください。

初投稿

Butterflv 自動ジャッジ 難易度:
18月前

23

問題文

任意の二次関数$\ f\ $についてある$\ \theta \ (0\le \theta \le 2\pi)$があって,$\ xy$座標平面上で$\ y=f(x)\ $を$\ \theta \ $反時計回りに回転させたものを考える.$\ $これがある関数$\ g(x)\ $で$\ y=g(x)\ $と表せるときの$\ \theta\ $としてありうるものの総和を$\ S\ $とするとき$\ S\ $を超えない最大の整数を回答して下さい.

解答形式

整数で回答してください.

BMC002-E

MARTH 自動ジャッジ 難易度:
18月前

12

直方体 $ABCD-EFGH$があり, $AB=\sqrt{2},AD=2023\sqrt{2},AE=2024\sqrt{2}$ です. 三角形 $BDE$ の面積を求めてください.

SMC100-25

MARTH 自動ジャッジ 難易度:
18月前

20

正整数 $m$ に対して, $m$ の正の約数全ての相加平均を $f(m)$ とします.このとき以下を満たす $m$ の総和を求めてください.
$$f(m)=\frac{m}{2}$$


${}$ 西暦2024年問題第6弾です。いよいよ整数問題のお出ましとなりました。ある程度は手を動かす必要がありますが、あることに気づけば調べる候補をぐっと減らすことができます。約数の個数を求めるのが面倒な方はWolfram|Alpha https://www.wolframalpha.com なども併用して構いません。

解答形式

${}$ 解答は求める$n$の最小値をそのまま入力してください。
(例)$n=2106$ → $\color{blue}{2106}$

OMC没問2

natsuneko 自動ジャッジ 難易度:
18月前

9

問題文

正整数 $n$ に対して, $n^i \equiv 1 \ (\textrm{mod} \ 25 )$ を満たす最小の正整数 $i$ を $f(n)$ とします. (ただし, このような $i$ が存在しない場合は, $f(n) = 0$ とします.) このとき, $1 \leq n \leq 10000$ の範囲で $f(n)$ が最大値をとるような $n$ の総積を $1000$ で割った余りを解答して下さい.

解答形式

非負整数値を解答して下さい.

16月前

5

問題文

円に内接する $8$ 角形 $ABCDEFGH$ が $\angle{A}=121^{\circ},\angle{B}=122^{\circ},\angle{C}=123^{\circ},\angle{D}=124^{\circ},\angle{E}=125^{\circ},\angle{F}=126^{\circ}$ を満たすとき,$\angle{G}$ の大きさを度数法で解答してください.

解答形式

半角数字で解答してください.

過去垢の問題(整数➀)

katsuo_temple 自動ジャッジ 難易度:
6月前

7

問題文

以下の式を満たす素数の組$(a,b,c,d)$について、$abcd$の総和を求めよ。
$$
4a²+b²+c²=d²
$$

解答形式

半角数字で解答してください。

まわりまわる面積比較

kusu394 自動ジャッジ 難易度:
12月前

4

問題文

四角形 $ABCD$ と三角形 $XYZ$ は以下の条件を満たします.
$$AD=505, \hspace{1pc} BC=507, \hspace{1pc} AB=CD, \hspace{1pc} \angle ABC=60^\circ, \hspace{1pc} \angle DCB=80^\circ$$ $$YZ=1, \hspace{1pc} XY=XZ, \hspace{1pc} \angle YXZ=40^\circ$$ このとき, 四角形 $ABCD$ の面積は三角形 $XYZ$ の面積の何倍ですか.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

追記:
若干日本語がおかしかったため編集しました. 解答には影響はないと思われます.
一応ヒント2に元の問題文を残してあります. 以上, よろしくお願いします.

除夜コン2023予選C3

shoko_math 自動ジャッジ 難易度:
16月前

6

問題文

$5\times5$ のマス目の異なる $2$ つのマスにナイトの駒を $1$ つずつ置き,「ナイトの駒の動きに従って $2$ つの駒を同時に動かす」という操作を繰り返したところ,$2$ つの駒が同じマスに止まりました.
このとき,最初にナイトの駒を置いた $2$ マスの組み合わせとしてあり得るものの総数を求めてください.

解答形式

半角数字で解答してください.

Two sequences (学コン2025-2-6)

Lim_Rim_ 自動ジャッジ 難易度:
47日前

4

問題文

$p=2^{10} - 3$とおき, 数列$a_n, b_n$を以下の式で定める.
\begin{aligned}
&a_0=0,\quad a_1 = 1,\quad a_{n+2} = 2a_{n+1} +2a_n & (n=0,1,\dots) \\
&b_0=0, \quad b_1 = 1,\quad b_{n+2} = 2b_{n+1} +(p+2)b_n & (n=0,1,\dots)
\end{aligned}

(1) $a_n,b_n$をそれぞれ$n$で表せ.
(2) $a_{1024}$を$p$で割った余りを求めよ. ただし, 整数$m$に対して$m^p\equiv m\pmod{p}$であることを用いてもよい.

解答形式

(2) の解答を入力してください((1)は解答参照)

備考

本問は大学への数学2025年2月号6番に掲載された自作問題です.

Ratio K/D (2019-理①-6)

Lim_Rim_ 自動ジャッジ 難易度:
46日前

4

問題文

$1000^{n}$ ($n$ は自然数) の正の約数の個数を $D_{n}$ とし, そのうち $10^{n}$ より大きく, $100^{n}$ より小さいものの個数を $K_{n}$ とする。
極限値
$$
\lim_{n \to \infty} \dfrac{K_{n}}{D_{n}}
$$
を求めよ。

解答形式

電卓を用いるなどして極限値の小数第5位までを解答してください.(0.1234567...の場合0.12345と解答する)

備考

本問は京大作問サークル理系模試2019の第1回6番に掲載している問題です.