可換なさんかく演算

hinu 自動ジャッジ 難易度: 数学
2020年6月9日17:49 正解数: 16 / 解答数: 16 (正答率: 100%) ギブアップ不可

全 16 件

回答日時 問題 解答者 結果
2024年2月29日12:26 可換なさんかく演算 Prime-Quest
正解
2024年1月25日8:26 可換なさんかく演算 natsuneko
正解
2020年6月24日23:27 可換なさんかく演算 dem08656775
正解
2020年6月12日22:33 可換なさんかく演算 nioshinoh_h
正解
2020年6月12日19:20 可換なさんかく演算 ゲスト
正解
2020年6月11日19:43 可換なさんかく演算 ゲスト
正解
2020年6月11日15:00 可換なさんかく演算 shakayami
正解
2020年6月10日14:54 可換なさんかく演算 nesya
正解
2020年6月10日13:53 可換なさんかく演算 yuma220284
正解
2020年6月9日19:28 可換なさんかく演算 mas_oka112
正解
2020年6月9日19:27 可換なさんかく演算 mochimochi
正解
2020年6月9日19:13 可換なさんかく演算 halphy
正解
2020年6月9日18:53 可換なさんかく演算 ゲスト
正解
2020年6月9日18:48 可換なさんかく演算 ゲスト
正解
2020年6月9日18:35 可換なさんかく演算 ゲスト
正解
2020年6月9日18:11 可換なさんかく演算 ゲスト
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

EasyNumber.2 二つの自然数

PCTSMATH 自動ジャッジ 難易度:
4年前

19

問題文

ある二つの自然数a,bは積が和より1000大きくどちらかが立方数だった
この時a,bの組を全て求めよ

解答形式

a<bとした時のaを小さい順に半角数字で解答せよ
例 (4,7)(8,91)の時は48

Almost Linear

okapin 自動ジャッジ 難易度:
4年前

13

問題文

$n$を2以上の整数とし, $f(x)=\sqrt[n]{x^n+nx^{n-1}} (x\geq0)$を考える。

$(1)$ $x$を正の整数とするとき, $f(x)$の値が整数でないことを示せ。

$(2)$ $y=f(x)$, $x$軸, $x=m-1$ ($m$は正の整数) で囲まれた領域内(境界線上も含む)の格子点の数を求めよ。

解答形式

$(2)$ で $m=100$ のときの答えを半角数字で入力してください。

[D] monotonous decrease

Benzenehat 自動ジャッジ 難易度:
4年前

13

問題文

$k$を$0$以上の実数, $e$を自然対数の底とする。数列$a_n$を
$$a_n=\frac{n!e^n}{n^{n+k}}$$
と定める。任意の自然数$n$に対して, $a_{n+1} < a_n$が成り立つような最小の$k$を求めよ。

解答形式

整数または既約分数で答えてください。

Second Number

okapin 自動ジャッジ 難易度:
4年前

21

問題文

$\sqrt[10] {10}$ の小数第一位の値を求めよ。
ただし, $\log_{10}{2}=0.3010$ とする。

解答形式

答えを半角数字で入力してください。

求面積問題3

Kinmokusei 自動ジャッジ 難易度:
4年前

12

問題文

図中の青い線分の長さはすべて10,赤で示した角はすべて等しいです。
このとき、緑色部分(凹四角形)の面積を求めてください。
解答形式に注意!

解答形式

$答えはA\sqrt{B}の形になります。(A,Bは自然数)$
$A+Bを解答してください。$
$<注意>$
$根号の中が最小となるようにしてください。$
$半角数字で解答してください。$
$例 : green area=10\sqrt{8}=20\sqrt{2}→A=20,B=2→22 と解答$

求面積問題2

Kinmokusei 自動ジャッジ 難易度:
4年前

11

問題文

緑色の線分の長さは1です。
このとき、円の面積を求めてください。
図中の赤点はそれを含む線分の中点です。

解答形式

答えは(分数)×πの形になります。
分子を1行目に、分母を2行目に半角数字で入力してください。
ただし、既約分数の形で解答してください。
例: (10/3)π → 1行目に10、2行目に3

E-加法定理

hinu 自動ジャッジ 難易度:
4年前

12

問題文

$x=0$ で微分可能な実数値連続関数 $f(x),g(x)$ は任意の実数 $x,y$ に対して以下の式を満たすとする。以下の空欄を埋めよ。

$$
f(x+y)=f(x)g(y)+g(x)f(y)\\g(x+y)=g(x)g(y)-f(x)f(y)
$$

$f'(0)=2,g'(0)=1$ であるとする。今 $f(0)=\fbox{ア},g(0)=\fbox{イ}$ であるので

$$
\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}=\fbox{ウ}f(x)+\fbox{エ}g(x)\\\lim_{h\to 0}\frac{g(x+h)-g(x)}{h}=\fbox{オ}f(x)+\fbox{カ}g(x)
$$

となる。 $h(x)=(f(x))^2+(g(x))^2$ とおくと

$$
h'(x)=\fbox{キ}h(x)
$$

これより

$$
\dfrac{d}{dx}(h(x)e^{-\fbox{キ}x})=\fbox{ク}
$$

がわかるので、

$$
h(x)=\fbox{ケ}e^{\fbox{コ}x}
$$

を得る。

解答形式

半角数字で改行区切りで記述せよ。たとえば $\fbox{ア}$ に $100$ , $\fbox{イ}$ に $-99$ と答えたい場合には1行目に $100$ , 2行目に $-99$ を記述せよ。

Corner Cases

halphy 自動ジャッジ 難易度:
4年前

22

問題文

次の命題の真偽を答えなさい。

  1. $0\leq a, b < 10$ を満たす実数 $a,b$ を $10$進小数 で表したものをそれぞれ $a_0.a_1a_2a_3\cdots, \;b_0.b_1b_2b_3\cdots$ とするとき,ある $k=0,1,\cdots$ に対して $a_k\neq b_k$ ならば $a\neq b$ である。

  2. $\vec{a}_1, \vec{a}_2$ を平行(*)でない平面ベクトルとする。実数 $k_1, k_2, k_1', k_2'$ に対して
    \begin{equation}
    k_1\vec{a}_1+k_2\vec{a}_2=k_1'\vec{a}_1+k_2'\vec{a}_2
    \end{equation}が成り立つならば $k_1=k_1'$ かつ $k_2=k_2'$ である。

  3. 実数全体を定義域とする微分可能な実数値関数 $f(x)$ が
    \begin{equation}
    f'(x)=x
    \end{equation}を満たすとする。このとき,$f(x)$ はある実数 $a$ を用いて
    \begin{equation}
    f(x)=\int_a^x t dt
    \end{equation}と表せる。

  4. 数列 $\{a_n\}, \{b_n\}$ は $n\to\infty$ である実数に収束するとする 。任意の $n$ に対して $b_n\neq 0$ ならば,数列 $\displaystyle{\left\{\frac{a_n}{b_n}\right\}}$ も収束する。

注意

  • *この問題では,平面ベクトル $\vec{a}_1, \vec{a}_2$ が平行であるとは $\vec{a}_1=k\vec{a}_2$ となる実数 $k\neq 0$ が存在することをいいます。
  • (2020/6/11 15:40 更新)命題 1 の条件を変更しました。正解には影響ありません。

解答形式

$k=1,2,3, 4$ に対して,命題 $k$ が真なら T を,偽なら F を第 $k$ 行に出力してください。

Thirteen Ones

halphy 自動ジャッジ 難易度:
4年前

27

問題文

$n\geq 2$ を自然数とする。$2$ 進数表記で
\begin{equation}
N=\underbrace{11\cdots 11}_n \underbrace{00\cdots 00} _ {n-1} {} _ {(2)}
\end{equation}と表される自然数 $N$ を考える。$n=13$ のとき,$N$ の正の約数の総和を求めなさい。

解答形式

$2$ 進数で答えなさい。

logの重複合成

shakayami 自動ジャッジ 難易度:
4年前

14

問題文

$f_m(x)$という関数列を$f_1(x)=\log{x},f_{m+1}=\log{f_m(x)}$と定義します。ただし$\log{x}$は自然対数です。
具体的には$f_1(x)=\log{x},f_2(x)=\log{\log{x}},f_3(x)=\log{\log{\log{x}}},\ldots$となります。
このとき、
$$\lim_{n\to\infty}\{f_m(3^n)-f_m(2^n)\}=0$$
となるような最小の自然数$m$を求めてください。

解答形式

半角数字で入力してください。

カオス的数列

masorata 自動ジャッジ 難易度:
4年前

9

問題文

関数 $f(x)$ を $f(x)=4x(1-x)$ で定義し、数列 $ \{ x_n \} $ $(n=1,2\dots)$ を、
$$
x_1=\sin^2{1}=0.708073418...,\ \ x_{n+1} = f(x_n) \ \ (n=1,2,...)
$$

で定める。このとき、 極限値 $\displaystyle \lim_{n \to \infty} \frac{1}{n}\sum_{k=1}^n \log|f'(x_k)|$ を求めよ。

注: 角度の単位はラジアンを用いる。 $\log$ は自然対数を表すものとする。また、$\pi$ が無理数であることは認めてよい。

解答形式

求めた極限値を小数で表し、絶対値の小数第4位を四捨五入したものに、必要ならば負号をつけて答えよ。すべて半角で入力すること。
例1: $2\pi = 6.2831...$と解答する場合には、「6.283」と入力せよ。
例2: $-\pi = -3.1415...$と解答する場合には、「-3.142」と入力せよ。

また、必要なら以下の自然対数の値を用いよ。
$\log2 = 0.6931..., \log3=1.0986... ,\log7 =1.9459...$

求値問題2

Kinmokusei 自動ジャッジ 難易度:
4年前

9

問題文

$△ABC$は鋭角三角形とします。次に、$A,B,C$から$BC,CA,AB$におろした垂線の足をそれぞれ$X,Y,Z$とし、$△ABC,△XYZ$の内接円の半径をそれぞれ$r,r'$とします。このとき、次の式の最小値を求めてください。
$$
\frac{r}{r'}\cos{\frac A2}\cos{\frac B2}\cos{\frac C2}
$$

解答形式

$$
\frac{r}{r'}\cos{\frac A2}\cos{\frac B2}\cos{\frac C2}\geq\frac{[ア]\sqrt{[イ]}}{[ウ]}=(最小値)
$$
となります。$[ア]+[イ]+[ウ]$を半角数字で解答してください。
ただし、$[ア],[イ],[ウ]$には自然数が入ります。また、分数部分は既約分数に、根号内の数字は最小となるようにしてください。