整数問題②

lucy 自動ジャッジ 難易度: 数学 > 高校数学
2020年6月8日1:47 正解数: 12 / 解答数: 14 (正答率: 85.7%) ギブアップ不可

問題文

$p^2+q^2+r^2+s^2=t^4+1$を満たす素数$(p,q,r,s,t)$の組を全て求めよ。但し$p\leq q\leq r\leq s$とする。

解答形式

一行目に式を満たす組が何組あるか答えよ。また、そのような組の中で、$t$が最大であるものについて、$p,q,r,s,t$の値をそれぞれ2行目、3行目、4行目…へ記入せよ。いずれも数字のみ記入せよ。

(本当は解き方まで見たいですが、個別判定が大変なのでこの形式にします。できれば、なぜそうなるかもしっかり考えてください。)


ヒント1

このタイプになれている人なら「多分何個かは2だ」と考えると思います。そこをどうやってちゃんとした理屈で確定付けられるかがポイントです。偶奇だけで考えると少し攻めきれないようですが…


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

整数問題①

lucy 自動ジャッジ 難易度:
4年前

23

問題文

$x!+2=y^4+5y$を満たす自然数$(x,y)$の組をすべて求めよ。

解答形式

以下の文章に入る$a,b,c$の値を入力せよ。1行目に$a$を、2行目に$b$を、3行目に$c$を入力すること。

条件を満たす自然数の組は$a$組存在する。その組の中で、$x$が最大となるような組は$(x,y)=(b,c)$である。

求面積問題5

Kinmokusei 自動ジャッジ 難易度:
4年前

9

問題文

正方形が2つ、図のように配置されています。赤い線分の長さが20のとき、緑で示した四角形の面積を求めてください。
ただし、図中の青点はそれぞれの正方形の対角線の交点です。

解答形式

半角数字で解答してください。

求面積問題14

Kinmokusei 自動ジャッジ 難易度:
3年前

14

問題文

周の長さが30である長方形ABCDがあります。辺CD上に∠APB=90°となるような点Pをとれるとき、長方形ABCDの面積の最大値を求めてください。

解答形式

半角数字で解答してください。

最大・最小問題

zyogamaya 自動ジャッジ 難易度:
3年前

19

問題文

$a,b,c$がいずれも正の実数であり、$a+b+c=5,abc=1$が成り立つとき、$ab+bc+ca$の最小値を求めよ。

解答形式

答えは既約分数になります。/を用いて入力してください。
例:$\displaystyle\frac{5}{7}$→5/7

hinu積分01

hinu 自動ジャッジ 難易度:
4年前

16

問題

定積分

$$
\int_0^{\pi/2}\dfrac{\cos{x}-x}{1+\sin{x}}dx
$$

を計算せよ。

回答形式

半角数字で答えよ。無理数や記号等を用いる場合はTeX形式で入力せよ。

2元7次不定方程式

zyogamaya 自動ジャッジ 難易度:
4年前

13

問題文

$x,y$を整数とする。不定方程式$x^7+17y=3$の解$x$をすべて求めよ。

解答形式

答えは、$n$を整数とし、
$x=[ab]n+[cd]$
($a,b,c,d$は一桁の自然数)
という形をしています。$a,b,c,d$の値を求め、$abcd$(4桁の自然数)を入力してください。

求面積問題8

Kinmokusei 自動ジャッジ 難易度:
4年前

15

問題文

△ABCと点Pをとり、△ABP, △BCP, △CAPの重心をそれぞれ$G_1, G_2, G_3$とします。青で示した3つの三角形の面積の和が10のとき、$△G_1G_2G_3$(赤い三角形)の面積を求めてください。

解答形式

半角数字で解答してください。

求長問題6

Kinmokusei 自動ジャッジ 難易度:
4年前

9

問題文

図のように配置された図形で、半円の半径が$5$、赤、青、緑の線分の長さがそれぞれ$3,X,Y$のとき、$X^2+Y^2$の値を求めてください。

解答形式

半角数字で解答してください。

求面積問題7

Kinmokusei 自動ジャッジ 難易度:
4年前

17

問題文

三角形の外側に3つの正方形を図のように作りました。橙・緑・紫の線分の長さを3辺の長さとする三角形(赤い三角形)の面積が57のとき、元の三角形(青い三角形)の面積を求めてください。

解答形式

半角数字で解答してください。

max漸化式

masorata 自動ジャッジ 難易度:
4年前

11

問題文

数列 $ \{ a_n \} $ $(n=1,2\dots)$ を、
$$
a_1=2,\ a_2=3,\ a_{n+1} = \max_{1 \leqq k \leqq n} \{ (n-k+1)a_k \}\ (n \geqq 2)
$$

で定める。$ \{ a_n \} $ の一般項を求め、さらに $\log_{3}{(a_{6062})}$ の値を求めよ。

解答形式

$\log_{3}{(a_{6062})}$ はある自然数となるので、その値を半角数字で答えよ。

求面積問題3

Kinmokusei 自動ジャッジ 難易度:
4年前

12

問題文

図中の青い線分の長さはすべて10,赤で示した角はすべて等しいです。
このとき、緑色部分(凹四角形)の面積を求めてください。
解答形式に注意!

解答形式

$答えはA\sqrt{B}の形になります。(A,Bは自然数)$
$A+Bを解答してください。$
$<注意>$
$根号の中が最小となるようにしてください。$
$半角数字で解答してください。$
$例 : green area=10\sqrt{8}=20\sqrt{2}→A=20,B=2→22 と解答$

整数問題(倍数)

zyogamaya 自動ジャッジ 難易度:
4年前

16

問題文

$f(x)=x^3+7x+6$の値が63の倍数になるような2桁の自然数$x$をすべて求めよ。

解答形式

解1つごとに改行して上から小さい順に半角数字で入力してください。$x=$は書かなくて良いです。