定積分
$$ \int_0^1 (\sqrt[7]{1-x^{11}}-\sqrt[11]{1-x^{7}})dx $$
を求めよ。
値は半角数字で記述せよ。無理数などを用いたい場合は必要ならばTeX記法により記述せよ。
図形的意味を考えましょう
$x^7+y^{11}=1,x\geq 0,y\geq 0$
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$f_m(x)$という関数列を$f_1(x)=\log{x},f_{m+1}=\log{f_m(x)}$と定義します。ただし$\log{x}$は自然対数です。 具体的には$f_1(x)=\log{x},f_2(x)=\log{\log{x}},f_3(x)=\log{\log{\log{x}}},\ldots$となります。 このとき、 $$\lim_{n\to\infty}\{f_m(3^n)-f_m(2^n)\}=0$$ となるような最小の自然数$m$を求めてください。
半角数字で入力してください。
$n$ を整数とする。$x$ の整式
$$ x^4+(3n+2)x^3+(n^2+5)x^2+nx-1 $$
が整数係数の範囲でさらに因数分解できるような $n$ をすべて求めよ。
$n$の値を小さい順に1,2,3,......行目にすべて半角で入力せよ。たとえば $n=-123, 45, 678$ と解答する場合、1行目に「-123」、2行目に「45」、3行目に「678」と入力せよ。
全長 $L$ mのリムジンが、下図のように直角に曲がったトンネルを、幅 $a(>0)$ mの道から幅 $b(>0)$ mの道へ曲がろうとしている。 このとき、リムジンがトンネルを曲がることのできる最大の全長 $L_{max}$ (m)を求めよ。なお、車の全幅は考えなくて良いものとする。
$a=5,b=6$のときの$L_{max}$の値を関数電卓を用いて計算せよ。答えは、小数第4位の数字を四捨五入したものを解答せよ。
$n\geq 2$ を自然数とする。$2$ 進数表記で \begin{equation} N=\underbrace{11\cdots 11}_n \underbrace{00\cdots 00} _ {n-1} {} _ {(2)} \end{equation}と表される自然数 $N$ を考える。$n=13$ のとき,$N$ の正の約数の総和を求めなさい。
$2$ 進数で答えなさい。
緑色の線分の長さは1です。 このとき、円の面積を求めてください。 図中の赤点はそれを含む線分の中点です。
答えは(分数)×πの形になります。 分子を1行目に、分母を2行目に半角数字で入力してください。 ただし、既約分数の形で解答してください。 例: (10/3)π → 1行目に10、2行目に3
$n$を2以上の整数とし, $f(x)=\sqrt[n]{x^n+nx^{n-1}} (x\geq0)$を考える。
$(1)$ $x$を正の整数とするとき, $f(x)$の値が整数でないことを示せ。
$(2)$ $y=f(x)$, $x$軸, $x=m-1$ ($m$は正の整数) で囲まれた領域内(境界線上も含む)の格子点の数を求めよ。
$(2)$ で $m=100$ のときの答えを半角数字で入力してください。
次の命題の真偽を答えなさい。
$0\leq a, b < 10$ を満たす実数 $a,b$ を $10$進小数 で表したものをそれぞれ $a_0.a_1a_2a_3\cdots, \;b_0.b_1b_2b_3\cdots$ とするとき,ある $k=0,1,\cdots$ に対して $a_k\neq b_k$ ならば $a\neq b$ である。
$\vec{a}_1, \vec{a}_2$ を平行(*)でない平面ベクトルとする。実数 $k_1, k_2, k_1', k_2'$ に対して \begin{equation} k_1\vec{a}_1+k_2\vec{a}_2=k_1'\vec{a}_1+k_2'\vec{a}_2 \end{equation}が成り立つならば $k_1=k_1'$ かつ $k_2=k_2'$ である。
実数全体を定義域とする微分可能な実数値関数 $f(x)$ が \begin{equation} f'(x)=x \end{equation}を満たすとする。このとき,$f(x)$ はある実数 $a$ を用いて \begin{equation} f(x)=\int_a^x t dt \end{equation}と表せる。
数列 $\{a_n\}, \{b_n\}$ は $n\to\infty$ である実数に収束するとする 。任意の $n$ に対して $b_n\neq 0$ ならば,数列 $\displaystyle{\left\{\frac{a_n}{b_n}\right\}}$ も収束する。
$k=1,2,3, 4$ に対して,命題 $k$ が真なら T を,偽なら F を第 $k$ 行に出力してください。
T
F
中心$O$, 直径$AB$とする円の$A,B$以外の円周上の点$C$を取り, $\angle BAC=\theta \ (0^\circ<\theta <90^\circ)$ とする。 このとき, 線分$OD$が線分$AC$によって二等分されるような点$D$が円周上に取れるような$\theta$の取りうる範囲を求めよ。
求める$\theta$の範囲は$a^\circ<\theta\leq b^\circ$となります。1行目に$a$, 2行目に$b$を半角数字で入力してください。
ある二つの自然数a,bは積が和より1000大きくどちらかが立方数だった この時a,bの組を全て求めよ
a<bとした時のaを小さい順に半角数字で解答せよ 例 (4,7)(8,91)の時は48
関数 $f(x)$ を $f(x)=4x(1-x)$ で定義し、数列 $ \{ x_n \} $ $(n=1,2\dots)$ を、 $$ x_1=\sin^2{1}=0.708073418...,\ \ x_{n+1} = f(x_n) \ \ (n=1,2,...) $$
で定める。このとき、 極限値 $\displaystyle \lim_{n \to \infty} \frac{1}{n}\sum_{k=1}^n \log|f'(x_k)|$ を求めよ。
注: 角度の単位はラジアンを用いる。 $\log$ は自然対数を表すものとする。また、$\pi$ が無理数であることは認めてよい。
求めた極限値を小数で表し、絶対値の小数第4位を四捨五入したものに、必要ならば負号をつけて答えよ。すべて半角で入力すること。 例1: $2\pi = 6.2831...$と解答する場合には、「6.283」と入力せよ。 例2: $-\pi = -3.1415...$と解答する場合には、「-3.142」と入力せよ。
また、必要なら以下の自然対数の値を用いよ。 $\log2 = 0.6931..., \log3=1.0986... ,\log7 =1.9459...$
関数 $f(x)=\sqrt[3]{-(x+4)(2x+3)(3x-8)}\ \left(\displaystyle -\frac{3}{2} \leq x \leq \frac{8}{3}\right)$ の最大値を求めよ。
半角数字またはTeXを入力してください。
$$ \int_0^{\pi/2}\dfrac{\cos{x}-x}{1+\sin{x}}dx $$
を計算せよ。
半角数字で答えよ。無理数や記号等を用いる場合はTeX形式で入力せよ。