EasyNumber.2 二つの自然数

PCTSMATH 自動ジャッジ 難易度: 数学 > 高校数学
2020年6月10日16:55 正解数: 15 / 解答数: 19 (正答率: 78.9%) ギブアップ不可

全 19 件

回答日時 問題 解答者 結果
2024年8月28日19:46 EasyNumber.2 二つの自然数 yuuu
不正解
2024年8月28日19:42 EasyNumber.2 二つの自然数 yuuu
不正解
2024年3月1日18:59 EasyNumber.2 二つの自然数 natsuneko
正解
2024年2月29日12:54 EasyNumber.2 二つの自然数 Prime-Quest
正解
2024年2月6日0:51 EasyNumber.2 二つの自然数 nmoon
正解
2021年7月4日11:14 EasyNumber.2 二つの自然数 ゲスト
正解
2021年1月6日22:44 EasyNumber.2 二つの自然数 Benzenehat
正解
2020年6月29日16:13 EasyNumber.2 二つの自然数 ゲスト
正解
2020年6月22日23:11 EasyNumber.2 二つの自然数 shobonvip
正解
2020年6月19日2:23 EasyNumber.2 二つの自然数 pichipichipizza
正解
2020年6月13日14:13 EasyNumber.2 二つの自然数 nioshinoh_h
正解
2020年6月11日18:08 EasyNumber.2 二つの自然数 ofukufukufuku
正解
2020年6月11日9:42 EasyNumber.2 二つの自然数 nagolife815
正解
2020年6月11日9:42 EasyNumber.2 二つの自然数 nagolife815
不正解
2020年6月11日1:37 EasyNumber.2 二つの自然数 mochimochi
正解
2020年6月10日18:22 EasyNumber.2 二つの自然数 okapin
正解
2020年6月10日17:13 EasyNumber.2 二つの自然数 shakayami
正解
2020年6月10日17:04 EasyNumber.2 二つの自然数 tribonacci
不正解
2020年6月10日17:00 EasyNumber.2 二つの自然数 yuma220284
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

logの重複合成

shakayami 自動ジャッジ 難易度:
4年前

14

問題文

$f_m(x)$という関数列を$f_1(x)=\log{x},f_{m+1}=\log{f_m(x)}$と定義します。ただし$\log{x}$は自然対数です。
具体的には$f_1(x)=\log{x},f_2(x)=\log{\log{x}},f_3(x)=\log{\log{\log{x}}},\ldots$となります。
このとき、
$$\lim_{n\to\infty}\{f_m(3^n)-f_m(2^n)\}=0$$
となるような最小の自然数$m$を求めてください。

解答形式

半角数字で入力してください。

求面積問題2

Kinmokusei 自動ジャッジ 難易度:
4年前

11

問題文

緑色の線分の長さは1です。
このとき、円の面積を求めてください。
図中の赤点はそれを含む線分の中点です。

解答形式

答えは(分数)×πの形になります。
分子を1行目に、分母を2行目に半角数字で入力してください。
ただし、既約分数の形で解答してください。
例: (10/3)π → 1行目に10、2行目に3

Thirteen Ones

halphy 自動ジャッジ 難易度:
4年前

27

問題文

$n\geq 2$ を自然数とする。$2$ 進数表記で
\begin{equation}
N=\underbrace{11\cdots 11}_n \underbrace{00\cdots 00} _ {n-1} {} _ {(2)}
\end{equation}と表される自然数 $N$ を考える。$n=13$ のとき,$N$ の正の約数の総和を求めなさい。

解答形式

$2$ 進数で答えなさい。

求長問題2

Kinmokusei 自動ジャッジ 難易度:
4年前

9

問題文

直径10の半円中に、直径の和が10となる2つの半円を図のように配置します。点Aを大半円の弧上にとり、線分AB,ACと小半円の交点をD,Eとします。
$BD^2+DE^2+EC^2$が最小となるようにしたとき、その最小値を求めてください。

解答形式

半角数字で解答してください。

Corner Cases

halphy 自動ジャッジ 難易度:
4年前

22

問題文

次の命題の真偽を答えなさい。

  1. $0\leq a, b < 10$ を満たす実数 $a,b$ を $10$進小数 で表したものをそれぞれ $a_0.a_1a_2a_3\cdots, \;b_0.b_1b_2b_3\cdots$ とするとき,ある $k=0,1,\cdots$ に対して $a_k\neq b_k$ ならば $a\neq b$ である。

  2. $\vec{a}_1, \vec{a}_2$ を平行(*)でない平面ベクトルとする。実数 $k_1, k_2, k_1', k_2'$ に対して
    \begin{equation}
    k_1\vec{a}_1+k_2\vec{a}_2=k_1'\vec{a}_1+k_2'\vec{a}_2
    \end{equation}が成り立つならば $k_1=k_1'$ かつ $k_2=k_2'$ である。

  3. 実数全体を定義域とする微分可能な実数値関数 $f(x)$ が
    \begin{equation}
    f'(x)=x
    \end{equation}を満たすとする。このとき,$f(x)$ はある実数 $a$ を用いて
    \begin{equation}
    f(x)=\int_a^x t dt
    \end{equation}と表せる。

  4. 数列 $\{a_n\}, \{b_n\}$ は $n\to\infty$ である実数に収束するとする 。任意の $n$ に対して $b_n\neq 0$ ならば,数列 $\displaystyle{\left\{\frac{a_n}{b_n}\right\}}$ も収束する。

注意

  • *この問題では,平面ベクトル $\vec{a}_1, \vec{a}_2$ が平行であるとは $\vec{a}_1=k\vec{a}_2$ となる実数 $k\neq 0$ が存在することをいいます。
  • (2020/6/11 15:40 更新)命題 1 の条件を変更しました。正解には影響ありません。

解答形式

$k=1,2,3, 4$ に対して,命題 $k$ が真なら T を,偽なら F を第 $k$ 行に出力してください。

都合のいいn

masorata 自動ジャッジ 難易度:
4年前

62

問題文

$n$ を整数とする。$x$ の整式

$$
x^4+(3n+2)x^3+(n^2+5)x^2+nx-1
$$

が整数係数の範囲でさらに因数分解できるような $n$ をすべて求めよ。

解答形式

$n$の値を小さい順に1,2,3,......行目にすべて半角で入力せよ。たとえば $n=-123, 45, 678$ と解答する場合、1行目に「-123」、2行目に「45」、3行目に「678」と入力せよ。

可換なさんかく演算

hinu 自動ジャッジ 難易度:
4年前

16

問題

自然数の組に対する二項演算 $\small \bigcirc$ および $ \triangle$ は以下の条件を満たすとする。

$$
\newcommand{\o}{\ \small\bigcirc \ \normalsize }
\newcommand{\tr}{\ \triangle \ }
a\tr b=\underbrace{(a\o (a\o (\cdots \o(a\o a))))}_{a\ が\ b\ 個}
$$

二項演算 $\tr$ が可換性

$$
a\tr b=b\tr a
$$

を満たすとき、次の問に答えよ

(1)  $1\o 1=2$ を示せ。

(2)  演算$\o$が結合法則

$$
a\o(b\o c)=(a\o b)\o c
$$

を満たすとき $2020\tr 2019$ の値を求めよ。

解答形式

(2)の値を半角数字で記述せよ。

求面積問題3

Kinmokusei 自動ジャッジ 難易度:
4年前

12

問題文

図中の青い線分の長さはすべて10,赤で示した角はすべて等しいです。
このとき、緑色部分(凹四角形)の面積を求めてください。
解答形式に注意!

解答形式

$答えはA\sqrt{B}の形になります。(A,Bは自然数)$
$A+Bを解答してください。$
$<注意>$
$根号の中が最小となるようにしてください。$
$半角数字で解答してください。$
$例 : green area=10\sqrt{8}=20\sqrt{2}→A=20,B=2→22 と解答$

カオス的数列

masorata 自動ジャッジ 難易度:
4年前

9

問題文

関数 $f(x)$ を $f(x)=4x(1-x)$ で定義し、数列 $ \{ x_n \} $ $(n=1,2\dots)$ を、
$$
x_1=\sin^2{1}=0.708073418...,\ \ x_{n+1} = f(x_n) \ \ (n=1,2,...)
$$

で定める。このとき、 極限値 $\displaystyle \lim_{n \to \infty} \frac{1}{n}\sum_{k=1}^n \log|f'(x_k)|$ を求めよ。

注: 角度の単位はラジアンを用いる。 $\log$ は自然対数を表すものとする。また、$\pi$ が無理数であることは認めてよい。

解答形式

求めた極限値を小数で表し、絶対値の小数第4位を四捨五入したものに、必要ならば負号をつけて答えよ。すべて半角で入力すること。
例1: $2\pi = 6.2831...$と解答する場合には、「6.283」と入力せよ。
例2: $-\pi = -3.1415...$と解答する場合には、「-3.142」と入力せよ。

また、必要なら以下の自然対数の値を用いよ。
$\log2 = 0.6931..., \log3=1.0986... ,\log7 =1.9459...$

Chocolate

okapin 自動ジャッジ 難易度:
4年前

10

問題文

おかぴんはチョコレート入りの袋が3袋入った箱を持っていて、これから食べようとしています。
しかし、おかぴんは怠惰なので食べ終わった空の袋を捨てずに、再び箱の中に入れてしまいます。
箱の中から1袋ずつ取り出して、それがチョコレートの入った袋だったなら食べて箱の中に空の袋を戻し、それが空の袋だったなら食べずにそのまま箱の中に戻す、という試行を繰り返します。
チョコレートの入った袋を取り出す確率も空の袋を取り出す確率も同様に確からしいとするとき、箱の中の全てのチョコレートを食べ終えるまでの試行回数の期待値を求めてください。

解答形式

答えは$\frac{\fboxア}{\fboxイ}$(ただし既約分数)となります。$\fboxア\fboxイ$に入る数字をそれぞれ1,2行目に半角で入力してください。

求面積問題4

Kinmokusei 自動ジャッジ 難易度:
4年前

8

問題文

半径比が1:2の同心円と直角三角形です。
赤い線分の長さが12のとき、緑の三角形の面積を求めてください。

解答形式

半角数字で解答してください。

求面積問題

Kinmokusei 自動ジャッジ 難易度:
4年前

19

問題文

青い三角形の面積が6のとき、外側の正方形の面積を求めてください。
なお、正方形と円は図中の赤で示した点で接します。

解答形式

正方形の面積を半角数字で入力してください。