三角関数の応用

MathoTV 採点者ジャッジ 難易度: 数学 > 高校数学
2023年4月15日7:44 正解数: 0 / 解答数: 1 ギブアップ不可

問題文

sinθcos^2θ+4sin^2θ+cos2θ-2sinθ+a-1=0を満たすθが存在しない場合におけるaのとりうる値の範囲を求めよ。

解答形式

答えのみ


ヒント1

1,与式を見て、公式が使えるところを全て正しく変形すると答えにグッと近づきます!


スポンサーリンク

解答提出

この問題は出題者ジャッジの問題です。 出題者が解答を確認してから採点を行います。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

王道の整数問題

nemuri_neco 自動ジャッジ 難易度:
2年前

12

問題文

$\frac{7p+q}{7q+p}$が整数となるような異なる素数$(p,q)$の組み合わせを全て求めよ。

解答形式

$p$と$q$を横につなげて解答してください。解答が2つ以上ある場合は$p$の小さい順に改行して記入してください。$p$が等しい解答が2つ以上あった場合、$q$の小さい順に改行して記入してください。

解答例)$(p,q)=(2,11),(7,17),(7,29)$のとき、以下のように解答します。
211
717
729

素数の方程式

hkd585 自動ジャッジ 難易度:
2年前

15

問題文

$2^{p+q}-p^{q}=13$を満たす素数$\left(p,q\right)$をすべて求めよ.

解答形式

$p^{2}+q^{2}$の値を,半角数字で解答してください.答えが複数ある場合は,値の小さい順に,1行に1つずつ書いてください.

(例)
解答が$\left(p,q\right)=\left(2,7\right),\left(5,11\right)$のときは,以下のように解答します.

53
146

余り

ryno 自動ジャッジ 難易度:
2年前

26

問題文

73²⁰²³を17で割った余りを求めよ。

解答形式

半角で答えてください


問題文

$n$ を正の整数とする。$f(n)=\sqrt{n^4+2n+61\ }$ が整数となるような $n$ を $1$ つ選び、そのときの $f(n)$ の値を答えよ。

なお、$f(n)$ が整数とならない場合や、答えた $f(n)$ の値が正しくない場合は不正解とする。

正解した場合は、まず解説を見よ。また、他のユーザーの回答も見てみよ。

解答形式

あなたが選んだ $n$ における $f(n)$ の値を半角数字で1行目に入力せよ。

hinu問題02

hinu 自動ジャッジ 難易度:
4年前

43

問題文

$a,b,c$ を実数とする。次の連立方程式を解け。

$$
a^2-4b-1=0\\
b^2-8c+28=0\\
c^2-6a+2=0\\
$$

解答形式

a,b,cを半角数字として(a,b,c)で解答してください。無理数などを使いたい場合はTeXコマンドを使用してください。

Sandwich+

baba 自動ジャッジ 難易度:
4年前

9

問題文

https://pororocca.com/problem/19/
こちらの問題の設定で,「裏裏裏裏裏表表表表表」というピザの塔ができるような調理は何通りあるか答えなさい.

解答形式

半角数字で入力してください.

円周率 3

hinu 自動ジャッジ 難易度:
4年前

56

問題文

$\pi$ と $\dfrac{355}{113}$ はどちらが大きいか。ただし必要があれば積分

$$
\int_0^1\frac{x^8(1-x)^8(25+816x^2)}{3164(1+x^2)}dx
$$

を計算せよ。

解答形式

piまたは 355/113 で解答してください。

Vo Sequence

halphy 自動ジャッジ 難易度:
4年前

13

問題文

「ボ」と「ー」からなる文字列のうち,以下の条件を満たすものをボー文字列と呼ぶことにします.


条件:長音記号「ー」が文字列の先頭にくることはなく,連続して現れない.


例えば,「ボボー」や「ボーボボ」はボー文字列ですが,「ーボー」や「ボボーー」はボー文字列ではありません.

ボー文字列に対して,次の操作を行うことを考えます.


操作:ボー文字列に対して,次のうちいずれか一方を行う.

  • (A)文字列のどこか1ヶ所に長音記号「ー」を付け加える.
  • (B)文字列の末尾に「ボ」を付け加える.

ただし,得られた文字列はボー文字列でなければならない.


1文字「ボ」から始めて,ボー文字列に対してくり返し操作を行い $n$ 文字からなるボー文字列が得られたとします.異なる操作の仕方の総数を $a_n$ とするとき,$a_{10}$ を求めなさい.

解答形式

半角数字で入力してください。

Sandwich

halphy 自動ジャッジ 難易度:
4年前

11

問題文

ピザが1枚ずつ乗った $N\;(\geq 2)$ 枚の皿が横一列に並んでいます.ピザにはがあり,表には具がのっていて,裏にはのっていません.はじめ,すべての皿のピザは表が上になっています.これらのピザに対して,次の操作Xを考えます.

操作X:

  1. 隣り合う2枚の皿に着目し,左側の皿に乗っているピザをひっくり返し,右側の皿の一番上に重ねる.ピザが複数枚乗っている場合は,ピザを重ねたまままるごとひっくり返す.
  2. 左側の皿を取り除き,皿どうしのすき間を詰める.

この操作Xを$\;N-1\;$回繰り返すと,1枚の皿にピザの塔ができます.操作Xの $N-1$ 回の繰り返しをピザの調理ということにします.ピザの塔を構成するピザを,上から順に$\;P_i\; (i=1,\cdots, N)\;$とし,$P_i$ が表を上に向けているとき「表」,裏を上に向けているとき「裏」と書くことにすると,ピザの塔は「裏裏裏表」のように表すことができます.

$N=6$とします.「裏裏裏裏表表」というピザの塔ができるような調理は何通りあるか答えなさい.

解答形式

半角数字で入力してください.

常に無理数か?

hinu 自動ジャッジ 難易度:
4年前

85

問題

(1) $a,b$ を整数でない正の有理数とする。 $a^b$ は常に無理数か。

(2) $a$ を整数でない正の有理数とする。 $a^a$ は常に無理数か。

(3) $a,b$ を正の無理数とする。 $a^b$ は常に無理数か。

(4) $a$ を正の無理数とする。 $a^a$ は常に無理数か。

解答方法

解答欄に改行区切りで O (オー)または X (エックス)を記述せよ。正解判定は各行に対して行われ、完答のみ正解となる。

hinu積分02

hinu 採点者ジャッジ 難易度:
4年前

1

問題

(1) 定積分

$$
\int_0^1 \frac{x\log x}{(x+1)^2}dx
$$

の値を求めよ。

(2) 関数列 ${f_n(x)}$ を

$$
f_{n+1}(x)=(x^x)^{f_n(x)},\quad f_1(x)=x^x
$$

で定める。定積分

$$
\int_0^1(x^x)^{{(x^x)}^{(x^x)\cdots}}dx:=\int_0^1\lim_{n\to \infty} f_n(x)\ dx
$$

の値を求めよ。ただしテトレーション $x^{{x^{x\cdots}}}$ は底 $x$ が $e^{-e}<x<e^{1/e}$ のとき収束することは証明せずに用いて良い。

備考

この問題の正解判定は出題者により手動で行われるため、判定までに時間がかかることがある。

Commutability

halphy ジャッジなし 難易度:
4年前

0

問題文

${\rm GL}(2,\mathbb{R})$ を $2\times 2$ 正則行列全体の集合とする.単位行列を $E$ とし,${\rm GL}(2,\mathbb{R})$ の部分集合 $S$ を

\begin{equation}
S=\{ A\in {\rm GL}(2,\mathbb{R})\mid \forall X\in {\rm GL}(2,\mathbb{R}), AX=XA\}
\end{equation}

で定めるとき

\begin{equation}
S=\{ rE \mid r\in \mathbb{R}, r\neq 0\}
\end{equation}

であることを証明せよ.