$N$ を正の整数として、以下の条件をすべて満たす数列 $\{a_n \}$ $(n=1,2,...)$ を考える。
・$a_1=1$
・$a_N=2020$
・すべての正の整数 $n$ について $\displaystyle \frac{a_{n+1}}{a_n}+\frac{4a_n}{a_{n+1}}=\frac{1}{a_n}- \frac{2}{a_{n+1}}+4$ が成り立つ。
このとき、$N=\fbox{アイ}$ である。また $a_7=\fbox{ウエオ}$ である。
ア〜オには、0から9までの数字が入る。
$N=\fbox{アイ}$ の答えとして、文字列「アイ」をすべて半角で1行目に入力せよ。
$a_7=\fbox{ウエオ}$ の答えとして、文字列「ウエオ」をすべて半角で2行目に入力せよ。
この問題を解いた人はこんな問題も解いています