円周率 3

hinu 自動ジャッジ 難易度: 数学 > 高校数学
2020年6月1日4:01 正解数: 46 / 解答数: 56 (正答率: 82.1%) ギブアップ不可

問題文

$\pi$ と $\dfrac{355}{113}$ はどちらが大きいか。ただし必要があれば積分

$$
\int_0^1\frac{x^8(1-x)^8(25+816x^2)}{3164(1+x^2)}dx
$$

を計算せよ。

解答形式

piまたは 355/113 で解答してください。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

50629の素因数分解

masorata 自動ジャッジ 難易度:
4年前

59

問題文

$x^4+4$ を因数分解せよ。また、この結果を用いて $50629$ を素因数分解せよ。

解答形式

50629の素因数を小さい順に1,2,3......行目に半角数字で入力せよ。

[A] Natural Number

okapin 自動ジャッジ 難易度:
4年前

65

問題文

$\dfrac{n^2+2020}{2n}$が自然数となるような自然数$n$の総和を求めよ。

解答形式

解答を半角数字で入力してください。

hinu問題02

hinu 自動ジャッジ 難易度:
4年前

43

問題文

$a,b,c$ を実数とする。次の連立方程式を解け。

$$
a^2-4b-1=0\\
b^2-8c+28=0\\
c^2-6a+2=0\\
$$

解答形式

a,b,cを半角数字として(a,b,c)で解答してください。無理数などを使いたい場合はTeXコマンドを使用してください。

[A] Don't Expand It!

masorata 自動ジャッジ 難易度:
4年前

43

問題文

$$
1+(2^1+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)
$$

は、$2$ で最大何回割り切れるか。

解答形式

半角数字のみで答えよ。
たとえば $5555$ 回割り切れると答えるのであれば1行目に
5555
と入力せよ。

求長問題5

Kinmokusei 自動ジャッジ 難易度:
4年前

18

問題文

※解答形式に注意!

図のように配置された3つの正三角形があります。青い線分の長さを求めてください。
ただし、赤、紫、緑の線分の長さはそれぞれ1,2,3で、隣り合う正三角形の間の角は30°です。

解答形式

答えは自然数$A,B$を用いて$A\sqrt{B}$の形に表せます。$A+B$を解答してください。
ただし、根号の中はできるだけ小さい自然数にしてください。

鏡の中のf(x)

masorata 自動ジャッジ 難易度:
4年前

74

問題文

関数 $f(x)$ は、すべての実数 $x$ に対して

$$
f(x)=2f(-x)+\frac{3x}{x^2+1}
$$

をみたす。このとき、$f(x)$ の最大値を求めよ。

解答形式

求める最大値は $\frac{p}{q}$ ($p,q$は自然数) と書ける。$p,q$ の値をそれぞれ1,2行目に半角数字で入力せよ。なお、できるだけ約分した形で答えよ。

hinu積分01

hinu 自動ジャッジ 難易度:
4年前

17

問題

定積分

$$
\int_0^{\pi/2}\dfrac{\cos{x}-x}{1+\sin{x}}dx
$$

を計算せよ。

回答形式

半角数字で答えよ。無理数や記号等を用いる場合はTeX形式で入力せよ。


問題文

$n$ を正の整数とする。$f(n)=\sqrt{n^4+2n+61\ }$ が整数となるような $n$ を $1$ つ選び、そのときの $f(n)$ の値を答えよ。

なお、$f(n)$ が整数とならない場合や、答えた $f(n)$ の値が正しくない場合は不正解とする。

正解した場合は、まず解説を見よ。また、他のユーザーの回答も見てみよ。

解答形式

あなたが選んだ $n$ における $f(n)$ の値を半角数字で1行目に入力せよ。

2変数関数の最大最小

tsukemono 自動ジャッジ 難易度:
10月前

29

問題文

関数$f(x,y)=x²+y²-2x+4y+1$の最小値とそのときの$x,y$の値を求めよ。
ただし、$x,y$はいずれも実数とする。

解答形式

x=𓏸𓏸,y=𓏸𓏸で、最小値𓏸𓏸と答えてください
数字は全て半角で答えてください

常に無理数か?

hinu 自動ジャッジ 難易度:
4年前

85

問題

(1) $a,b$ を整数でない正の有理数とする。 $a^b$ は常に無理数か。

(2) $a$ を整数でない正の有理数とする。 $a^a$ は常に無理数か。

(3) $a,b$ を正の無理数とする。 $a^b$ は常に無理数か。

(4) $a$ を正の無理数とする。 $a^a$ は常に無理数か。

解答方法

解答欄に改行区切りで O (オー)または X (エックス)を記述せよ。正解判定は各行に対して行われ、完答のみ正解となる。

直角三角形の辺の長さの比

Fuji495616 自動ジャッジ 難易度:
11月前

31

問題文

図のような2つの直角三角形があります。青い角度の和が45°のとき、ア:イを求めなさい。

解答形式(注意!!)

ア÷イの値を半角で入力してください。
例)ア:イ=7:2
  →3.5

分数の足し算

tsukemono 自動ジャッジ 難易度:
10月前

29

問題文

次の計算をせよ。
$$
\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}
$$

解答形式

分子/分母 の形で解答してください
既約分数で解答してください
例 1/3